2,027 research outputs found

    The analytic structure of heavy quark propagators

    Get PDF
    The renormalised quark Dyson-Schwinger equation is studied in the limit of the renormalised current heavy quark mass m_R --> infinity. We are particularly interested in the analytic pole structure of the heavy quark propagator in the complex momentum plane. Approximations in which the quark-gluon vertex is modelled by either the bare vertex or the Ball-Chiu Ansatz, and the Landau gauge gluon propagator takes either a gaussian form or a gaussian form with an ultraviolet asymptotic tail are used.Comment: 21 pages Latex and 5 postscript figures. The original version of this paper has been considerably extended to include a formalism dealing with the renormalised heavy quark Dyson-Schwinger equation and uses a more realistic Ansatz for the gluon propagator

    Gauge covariance and the fermion-photon vertex in three- and four- dimensional, massless quantum electrodynamics

    Full text link
    In the quenched approximation, the gauge covariance properties of three vertex Ans\"{a}tze in the Schwinger-Dyson equation for the fermion self energy are analysed in three- and four- dimensional quantum electrodynamics. Based on the Cornwall-Jackiw-Tomboulis effective action, it is inferred that the spectral representation used for the vertex in the gauge technique cannot support dynamical chiral symmetry breaking. A criterion for establishing whether a given Ansatz can confer gauge covariance upon the Schwinger-Dyson equation is presented and the Curtis and Pennington Ansatz is shown to satisfy this constraint. We obtain an analytic solution of the Schwinger-Dyson equation for quenched, massless three-dimensional quantum electrodynamics for arbitrary values of the gauge parameter in the absence of dynamical chiral symmetry breaking.Comment: 17 pages, PHY-7143-TH-93, REVTE

    Vector Positronium States in QED3

    Full text link
    The homogeneous Bethe-Salpeter equation is solved in the quenched ladder approximation for the vector positronium states of 4-component quantum electrodynamics in 2 space and 1 time dimensions. Fermion propagator input is from a Rainbow approximation Dyson-Schwinger solution, with a broad range of fermion masses considered. This work is an extension of earlier work on the scalar spectrum of the same model. The non-relativistic limit is also considered via the large fermion mass limit. Classification of states via their transformation properties under discrete parity transformations allows analogies to be drawn with the meson spectrum of QCD.Comment: 24 pages, 2 encapsulated postscript figure

    Nonperturbative Vertices in Supersymmetric Quantum Electrodynamics

    Get PDF
    We derive the complete set of supersymmetric Ward identities involving only two- and three- point proper vertices in supersymmetric QED. We also present the most general form of the proper vertices consistent with both the supersymmetric and U(1) gauge Ward identities. These vertices are the supersymmetric equivalent of the non supersymmetric Ball-Chiu vertices.Comment: seventeen pages late

    Diquarks: condensation without bound states

    Full text link
    We employ a bispinor gap equation to study superfluidity at nonzero chemical potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory, QC2D, is an excellent exemplar: the order of truncation of the quark-quark scattering kernel: K, has no qualitative impact, which allows a straightforward elucidation of the effects of mu when the coupling is strong. In rainbow-ladder truncation, diquark bound states appear in the spectrum of the three-colour theory, a defect that is eliminated by an improvement of K. The corrected gap equation describes a superfluid phase that is semi-quantitatively similar to that obtained using the rainbow truncation. A model study suggests that the width of the superfluid gap and the transition point in QC2D provide reliable quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi

    QED in external fields, a functional point of view

    Get PDF
    A functional partial differential equation is set for the proper graphs generating functional of QED in external electromagnetic fields. This equation leads to the evolution of the proper graphs with the external field amplitude and the external field gauge dependence of the complete fermion propagator and vertex is derived non-perturbativally.Comment: 8 pages, published versio

    Nucleon form factors and a nonpointlike diquark

    Get PDF
    Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and the quark are confined. A good description of the data requires a nonpointlike diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite, nonpointlike nature of the diquark is crucial. It provides for diquark-breakup terms that are of greater importance than the diquark photon absorption contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure

    Off Mass Shell Effects in Hadron Electric Dipole Moments

    Full text link
    We note that off the quark mass shell the operators (pi+pf)μγ5(p_i+p_f)_\mu\gamma_5 and iσμν(pipf)νγ5i\sigma_{\mu\nu}(p_i -p_f)^\nu\gamma_5, both of which reduce to σE-\vec{\sigma}\cdot\vec{E} in the non-relativistic limit, are no longer identical. In this paper we explore the effects of this difference in the contribution of these quark electric moments to hadronic electric moments.Comment: 21 pages, 1 figure, Revtex, uses psfi

    Gravitational radiation from monopoles connected by strings

    Full text link
    Monopole-antimonopole pairs connected by strings can be formed as topological defects in a sequence of cosmological phase transitions. Such hybrid defects typically decay early in the history of the universe but can still generate an observable background of gravitational waves. We study the spectrum of gravitational radiation from these objects both analytically and numerically, concentrating on the simplest case of an oscillating pair connected by a straight string.Comment: 18 pages, RevTex and 2 postscript figures. Submitted to Phys. Rev.
    corecore