1,500 research outputs found
Slide release mechanism
A releasable support device is described which is comprised of a hollow body with a sleeve extending transversely there-through for receiving the end of a support shank. A slider-latch, optionally lubricated, extends through side recesses in the sleeve to straddle the shank, respectively, in latched and released positions. The slider-latch is slid from its latched to its unlatched position by a pressure squib whereupon a spring or other pressure means pushes the shank out of the sleeve. At the same time, a follower element is lodged in and closed the hole in the body wall from which the shank was discharged. The mechanism was designed for the shuttle orbiter/external tank connection device
Longitudinal magnetic excitations in classical spin systems
Using spin dynamics simulations we predict the splitting of the longitudinal
spin wave peak in all antiferromagnets with single site anisotropy into two
peaks separated by twice the energy gap at the Brillouin zone center. This
phenomenon has yet to be observed experimentally but can be easily investigated
through neutron scattering experiments on MnF and FeF. We have also
determined that for all classical Heisenberg models the longitudinal
propagative excitations are entirely multiple spin-wave in nature.Comment: four pages three figures, the last two postscript files are two parts
of the third figur
Construction and Measurements of an Improved Vacuum-Swing-Adsorption Radon-Mitigation System
In order to reduce backgrounds from radon-daughter plate-out onto detector
surfaces, an ultra-low-radon cleanroom is being commissioned at the South
Dakota School of Mines and Technology. An improved vacuum-swing-adsorption
radon mitigation system and cleanroom build upon a previous design implemented
at Syracuse University that achieved radon levels of
0.2Bqm. This improved system will employ a better pump and
larger carbon beds feeding a redesigned cleanroom with an internal HVAC unit
and aged water for humidification. With the rebuilt (original) radon mitigation
system, the new low-radon cleanroom has already achieved a 300
reduction from an input activity of Bqm to a
cleanroom activity of Bqm.Comment: 5 pages, 4 figures, Proceedings of Low Radioactivity Techniques (LRT)
2015, Seattle, WA, March 18-20, 201
Metallization of Fluid Hydrogen
The electrical resistivity of liquid hydrogen has been measured at the high
dynamic pressures, densities and temperatures that can be achieved with a
reverberating shock wave. The resulting data are most naturally interpreted in
terms of a continuous transition from a semiconducting to a metallic, largely
diatomic fluid, the latter at 140 GPa, (ninefold compression) and 3000 K. While
the fluid at these conditions resembles common liquid metals by the scale of
its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing
character, and the precise mechanism by which a metallic state might be
attained is still a matter of debate. Some evident possibilities include (i)
physics of a largely one-body character, such as a band-overlap transition,
(ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard
transition, and (iii) processes in which structural changes are paramount.Comment: 12 pages, RevTeX format. Figures available on request; send mail to:
[email protected] To appear: Philosophical Transaction of the Royal
Society
Seeking the Ultraviolet Ionizing Background at z~3 with the Keck Telescope
We describe the initial results of a deep long-slit emission line search for
redshifted (2.7<z<4.1) Lyman-alpha. These observations are used to constrain
the fluorescent Ly-alpha emission from the population of clouds whose
absorption produces the higher-column-density component of the Ly-alpha forest
in quasar spectra. We use the results to set an upper limit on the ultraviolet
ionizing background. Our spectroscopic data obtained with the Keck II telescope
at lambda/(Delta lambda FWHM)~2000 reveals no candidate Ly-alpha emission over
the wavelength range of 4500-6200 Ang along a 3 arcmin slit in a 5400 s
integration. Our 3 sigma upper bound on the mean intensity of the ionizing
background at the Lyman limit is J(nu 0) < 2E-21 erg/s/cm**2/Hz/sr for
2.7<z<3.1 (where we are most sensitive), assuming Lyman limit systems have
typical radii of 70 kpc (q_0=0.5, H_0=50 km/s/Mpc). This constraint is more
than an order of magnitude more stringent than any previously published direct
limit. However, it is still a factor of three above the ultraviolet background
level expected due to the integrated light of known quasars at z~3. This pilot
study confirms the conclusion of Gould \& Weinberg (1996) that integrations of
several hours on a 10-m class telescope should be capable of measuring J(nu 0)
at high redshift.Comment: 22 pages, 2 postscipt figures. Latex requires aaspp4.sty and epsf.sty
(included). Accepted for publication in the Astronomical Journal (Nov 1998
Nonstatistical dynamics on potentials exhibiting reaction path bifurcations and valley-ridge inflection points
We study reaction dynamics on a model potential energy surface exhibiting
post-transition state bifurcation in the vicinity of a valley ridge inflection
point. We compute fractional yields of products reached after the VRI region is
traversed, both with and without dissipation. It is found that apparently minor
variations in the potential lead to significant changes in the reaction
dynamics. Moreover, when dissipative effects are incorporated, the product
ratio depends in a complicated and highly non-monotonic fashion on the
dissipation parameter. Dynamics in the vicinity of the VRI point itself play
essentially no role in determining the product ratio, except in the highly
dissipative regime.Comment: 33 pages, 10 figures, corrected the author name in reference [6
Isomerization dynamics of a buckled nanobeam
We analyze the dynamics of a model of a nanobeam under compression. The model
is a two mode truncation of the Euler-Bernoulli beam equation subject to
compressive stress. We consider parameter regimes where the first mode is
unstable and the second mode can be either stable or unstable, and the
remaining modes (neglected) are always stable. Material parameters used
correspond to silicon. The two mode model Hamiltonian is the sum of a
(diagonal) kinetic energy term and a potential energy term. The form of the
potential energy function suggests an analogy with isomerisation reactions in
chemistry. We therefore study the dynamics of the buckled beam using the
conceptual framework established for the theory of isomerisation reactions.
When the second mode is stable the potential energy surface has an index one
saddle and when the second mode is unstable the potential energy surface has an
index two saddle and two index one saddles. Symmetry of the system allows us to
construct a phase space dividing surface between the two "isomers" (buckled
states). The energy range is sufficiently wide that we can treat the effects of
the index one and index two saddles in a unified fashion. We have computed
reactive fluxes, mean gap times and reactant phase space volumes for three
stress values at several different energies. In all cases the phase space
volume swept out by isomerizing trajectories is considerably less than the
reactant density of states, proving that the dynamics is highly nonergodic. The
associated gap time distributions consist of one or more `pulses' of
trajectories. Computation of the reactive flux correlation function shows no
sign of a plateau region; rather, the flux exhibits oscillatory decay,
indicating that, for the 2-mode model in the physical regime considered, a rate
constant for isomerization does not exist.Comment: 42 pages, 6 figure
Collisional Semiclassical Aproximations in Phase-Space Representation
The Gaussian Wave-Packet phase-space representation is used to show that the
expansion in powers of of the quantum Liouville propagator leads, in
the zeroth order term, to results close to those obtained in the statistical
quasiclassical method of Lee and Scully in the Weyl-Wigner picture. It is also
verified that propagating the Wigner distribution along the classical
trajectories the amount of error is less than that coming from propagating the
Gaussian distribution along classical trajectories.Comment: 20 pages, REVTEX, no figures, 3 tables include
Permeation of CO2 and N2 through glassy poly(dimethyl phenylene) oxide under steady- and presteady-state conditions
Glassy polymers are often used for gas separations because of their high selectivity. Although the dual-mode permeation model correctly fits their sorption and permeation isotherms, its physical interpretation is disputed, and it does not describe permeation far from steady state, a condition expected when separations involve intermittent renewable energy sources. To develop a more comprehensive permeation model, we combine experiment, molecular dynamics, and multiscale reaction–diffusion modeling to characterize the time-dependent permeation of N2 and CO2 through a glassy poly(dimethyl phenylene oxide) membrane, a model system. Simulations of experimental time-dependent permeation data for both gases in the presteady-state and steady-state regimes show that both single- and dual-mode reaction–diffusion models reproduce the experimental observations, and that sorbed gas concentrations lag the external pressure rise. The results point to environment-sensitive diffusion coefficients as a vital characteristic of transport in glassy polymers
- …