48 research outputs found

    Regulatory Feedback Loop of Two phz Gene Clusters through 5′-Untranslated Regions in Pseudomonas sp. M18

    Get PDF
    BACKGROUND: Phenazines are important compounds produced by pseudomonads and other bacteria. Two phz gene clusters called phzA1-G1 and phzA2-G2, respectively, were found in the genome of Pseudomonas sp. M18, an effective biocontrol agent, which is highly homologous to the opportunistic human pathogen P. aeruginosa PAO1, however little is known about the correlation between the expressions of two phz gene clusters. METHODOLOGY/PRINCIPAL FINDINGS: Two chromosomal insertion inactivated mutants for the two gene clusters were constructed respectively and the correlation between the expressions of two phz gene clusters was investigated in strain M18. Phenazine-1-carboxylic acid (PCA) molecules produced from phzA2-G2 gene cluster are able to auto-regulate expression itself and activate the expression of phzA1-G1 gene cluster in a circulated amplification pattern. However, the post-transcriptional expression of phzA1-G1 transcript was blocked principally through 5'-untranslated region (UTR). In contrast, the phzA2-G2 gene cluster was transcribed to a lesser extent and translated efficiently and was negatively regulated by the GacA signal transduction pathway, mainly at a post-transcriptional level. CONCLUSIONS/SIGNIFICANCE: A single molecule, PCA, produced in different quantities by the two phz gene clusters acted as the functional mediator and the two phz gene clusters developed a specific regulatory mechanism which acts through 5'-UTR to transfer a single, but complex bacterial signaling event in Pseudomonas sp. strain M18

    Analysis of lunar pyroclastic deposit FeO abundances by LRO Diviner

    No full text
    [1] Thermal infrared reflectance spectra of rock‐forming minerals include a prominent minimum near 8μm, known as the “Christiansen feature” (CF). The inflection point wavelength is sensitive to the degree of polymerization of silicates, which is strongly influenced by major cations – notably iron – in the minerals. Laboratory spectra of lunar soils demonstrate that the CF location is closely correlated to the sample's bulk FeO abundance, across the full range of Apollo soil samples, including pyroclastic glass. This correlation is the basis for estimating lunar surface FeO abundances using orbital thermal infrared measurements. The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter includes three thermal infrared channels, selected to determine the CF positions for sites across the lunar surface. Diviner measurements are used to derive FeO abundances in the Aristarchus, Sulpicius Gallus, and Rima Fresnel pyroclastic deposits. The calculated FeO abundances for Aristarchus and Sulpicius Gallus lie within the compositional range of FeO‐rich pyroclastic glasses but outside the range of most mare soils, supporting the interpretations of these deposits as glass rich. The calculated FeO abundance for the Rima Fresnel deposit is close to that of mare soils, supporting a contention that this deposit is dominated by basaltic fragments rather than glass. The Diviner measurements hold the potential to determine FeO abundances in many lunar pyroclastic deposits. A better understanding of these compositions will provide insight into the magmatic history and composition of the lunar interior, as well as an enhanced inventory of potential resources for future human exploration

    A new experimental setup for making thermal emission measurements in a simulated lunar environment.

    No full text
    One of the key problems in determining lunar surface composition for thermal-infrared measurements is the lack of comparable laboratory-measured spectra. As the surface is typically composed of fine-grained particulates, the lunar environment induces a thermal gradient within the near sub-surface, altering the emission spectra: this environment must therefore be simulated in the laboratory, considerably increasing the complexity of the measurement. Previous measurements have created this thermal gradient by either heating the cup in which the sample sits or by illuminating the sample using a solar-like source. This is the first setup able to measure in both configurations, allowing direct comparisons to be made between the two. Also, measurements across a wider spectral range and at a much higher spectral resolution can be acquired using this new setup. These are required to support new measurements made by the Diviner Lunar Radiometer, the first multi-spectral thermal-infrared instrument to orbit the Moon. Results from the two different heating methods are presented, with measurements of a fine-grained quartz sample compared to previous similar measurements, plus measurements of a common lunar highland material, anorthite. The results show that quartz gives the same results for both methods of heating, as predicted by previous studies, though the anorthite spectra are different. The new calibration pipeline required to convert the raw data into emissivity spectra is described also

    Constraints on olivine-rich rock types on the Moon as observed by Diviner and M 3 : Implications for the formation of the lunar crust

    No full text
    We place upper limits on lunar olivine abundance using midinfrared (5–25 µm) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M3and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90 wt %, in contrast to the higher abundance estimates derived from VNIR data

    Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust

    No full text
    Recent advancements in visible to near infrared orbital measurements of the lunar surface have allowed the character and extent of the primary anorthositic crust to be studied at unprecedented spatial and spectral resolutions. Here we assess the lunar primary anorthositic crust in global context using a spectral parameter tool for Moon Mineralogy Mapper data to identify and map Fe‐bearing crystalline plagioclase based on its diagnostic 1.25 µm absorption band. This allows plagioclase‐dominated rocks, specifically anorthosites, to be unambiguously identified as well as distinguished from lithologies with minor to trace amounts of mafic minerals. Low spatial resolution global mosaics and high spatial resolution individual data strips covering more than 650 targeted craters were analyzed to identify and map the mineralogy of spectrally pure regions as small as ~400 m in size. Spectrally, pure plagioclase is identified in approximately 450 targets located across the lunar surface. Diviner thermal infrared (TIR) data are analyzed for 37 of these nearly monomineralic regions in order to understand the compositional variability of plagioclase (An#) in these areas. The average An# for each spectrally pure region is estimated using new laboratory measurements of a well‐characterized anorthite (An96) sample. Diviner TIR results suggest that the plagioclase composition across the lunar highlands is relatively uniform, high in calcium content, and consistent with plagioclase compositions found in the ferroan anorthosites (An94–98). Our results confirm that spectrally pure anorthosite is widely distributed across the lunar surface, and most exposures of the ancient anorthositic crust are concentrated in regions of thicker crust surrounding impact basins on the lunar nearside and farside. In addition, the scale of the impact basins and the global nature and distribution of pure plagioclase requires a coherent zone of anorthosite of similar composition in the lunar crust supporting its formation from a single differentiation event like a magma ocean. Our identifications of pure anorthosite combined with the GRAIL crustal thickness model suggest that pure anorthosite is currently observed at a range of crustal thickness values between 9 and 63 km and that the primary anorthositic crust must have been at least 30 km thick. </p

    Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust

    No full text
    Recent advancements in visible to near infrared orbital measurements of the lunar surface have allowed the character and extent of the primary anorthositic crust to be studied at unprecedented spatial and spectral resolutions. Here we assess the lunar primary anorthositic crust in global context using a spectral parameter tool for Moon Mineralogy Mapper data to identify and map Fe‐bearing crystalline plagioclase based on its diagnostic 1.25 µm absorption band. This allows plagioclase‐dominated rocks, specifically anorthosites, to be unambiguously identified as well as distinguished from lithologies with minor to trace amounts of mafic minerals. Low spatial resolution global mosaics and high spatial resolution individual data strips covering more than 650 targeted craters were analyzed to identify and map the mineralogy of spectrally pure regions as small as ~400 m in size. Spectrally, pure plagioclase is identified in approximately 450 targets located across the lunar surface. Diviner thermal infrared (TIR) data are analyzed for 37 of these nearly monomineralic regions in order to understand the compositional variability of plagioclase (An#) in these areas. The average An# for each spectrally pure region is estimated using new laboratory measurements of a well‐characterized anorthite (An96) sample. Diviner TIR results suggest that the plagioclase composition across the lunar highlands is relatively uniform, high in calcium content, and consistent with plagioclase compositions found in the ferroan anorthosites (An94–98). Our results confirm that spectrally pure anorthosite is widely distributed across the lunar surface, and most exposures of the ancient anorthositic crust are concentrated in regions of thicker crust surrounding impact basins on the lunar nearside and farside. In addition, the scale of the impact basins and the global nature and distribution of pure plagioclase requires a coherent zone of anorthosite of similar composition in the lunar crust supporting its formation from a single differentiation event like a magma ocean. Our identifications of pure anorthosite combined with the GRAIL crustal thickness model suggest that pure anorthosite is currently observed at a range of crustal thickness values between 9 and 63 km and that the primary anorthositic crust must have been at least 30 km thick. </p

    Thermal infrared emissivity measurements under a simulated lunar environment: Application to the Diviner Lunar Radiometer Experiment

    No full text
    We present new laboratory thermal infrared emissivity spectra of the major silicate minerals identified on the Moon measured under lunar environmental conditions and evaluate their application to lunar remote sensing data sets. Thermal infrared spectral changes between ambient and lunar environmental conditions are characterized for the first time over the 400∼1700 cm -1 (6-25 m) spectral range for a fine-particulate mineral suite including plagioclase (albite and anorthite), pyroxene (enstatite and augite), and olivine (forsterite). The lunar environment introduces observable effects in thermal infrared emissivity spectra of fine particulate minerals, which include: (1) a shift in the Christiansen feature (CF) position to higher wave numbers (shorter wavelengths), (2) an increase in the overall spectral contrast, and (3) decreases in the spectral contrast of the reststrahlen bands and transparency features. Our new measurements demonstrate the high sensitivity of thermal infrared emissivity spectra to environmental conditions under which they are measured and provide important constraints for interpreting new thermal infrared data sets of the Moon, including the Diviner Lunar Radiometer Experiment onboard NASA's Lunar Reconnaissance Orbiter. Full resolution laboratory mineral spectra convolved to Diviner's three spectral channels show that spectral shape, CF position and band ratios can be used to distinguish between individual mineral groups and lunar lithologies. The integration of the thermal infrared CF position with near infrared spectral parameters allows for robust mineralogical identifications and provides a framework for future integrations of data sets across two different wavelength regimes. Copyright 2012 by the American Geophysical Union

    Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions

    No full text
    New laboratory thermal infrared emissivity measurements of the plagioclase solid solution series over the 1700∼400cm-1 (6-25m) spectral range are presented. Thermal infrared (TIR) spectral changes for fine-particulate samples (0-25m) are characterized for the first time under different laboratory environmental conditions: ambient (terrestrial-like), half-vacuum (Mars-like), vacuum, and vacuum with cooled chamber (lunar-like). Under all environmental conditions the Christiansen Feature (CF) is observed to vary in a systematic way with Na-rich end-member (albite) having a CF position at the highest wave number (shortest wavelength) and the Ca-rich end-member (anorthite) having a CF position with the lowest wave number (longest wavelength). As pressure decreases to&lt;10-3mbar four observations are made: (1) the CF position shifts to higher wave numbers, (2) the spectral contrast of the CF increases relative to the RB, (3) the spectral contrast of the RB in the ∼1200-900 spectral range decreases while the spectral contrast of the RB in the ∼800-400 spectral range either increases or remains the same and (4) the TF disappears. A relationship between the wavelength position of the CF measured under simulated lunar conditions and plagioclase composition (An#) is developed. Although its exact form may evolve with additional data, this linear relationship should be applied to current and future TIR data sets of the Moon. Our new spectral measurements demonstrate how sensitive thermal infrared emissivity spectra of plagioclase feldspars are to the environmental conditions under which they are measured and provide important constraints for interpreting current and future thermal infrared data sets. © 2012 American Geophysical Union. All Rights Reserved

    Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

    No full text
    Currently, few thermal infrared measurements exist of fine particulate ( < 63 μm) analogue samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar condi- tions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA’s Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal in- frared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particu- late ( < 25 μm) San Carlos olivine sample as we systematically vary parameters that control the near- surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum ( < 10^−3 mbar) pressures, the incident solar-like radiation is varied between 52 and 146 mW/cm 2 , and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sam- pling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.</p
    corecore