8 research outputs found

    Global dynamic topography observations reveal limited influence of large-scale mantle flow

    Get PDF
    Convective circulation of the Earth’s mantle maintains some fraction of surface topography that varies with space and time. Most predictive models show that this dynamic topography has peak amplitudes of about ±2 km, dominated by wavelengths of 104 km. Here, we test these models against our comprehensive observational database of 2,120 spot measurements of dynamic topography that were determined by analysing oceanic seismic surveys. These accurate measurements have typical peak amplitudes of ±1 km and wavelengths of approximately 103 km, and are combined with limited continental constraints to generate a global spherical harmonic model, the robustness of which has been carefully tested and benchmarked. Our power spectral analysis reveals significant discrepancies between observed and predicted dynamic topography. At longer wavelengths (such as 104 km), observed dynamic topography has peak amplitudes of about ±500 m. At shorter wavelengths (such as 103 km), significant dynamic topography is still observed. We show that these discrepancies can be explained if short-wavelength dynamic topography is generated by temperature-driven density anomalies within a sub-plate asthenospheric channel. Stratigraphic observations from adjacent continental margins show that these dynamic topographic signals evolve quickly with time. More rapid temporal and spatial changes in vertical displacement of the Earth’s surface have direct consequences for fields as diverse as mantle flow, oceanic circulation and long-term climate change.This research was supported by a BP-Cambridge collaboration. We are grateful to ION for permission to publish partial seismic reflection profiles shown in Fig. 2 from their IndiaSPAN and Greater BrasilSPAN data sets

    Constraints on the presence of post-perovskite in Earth's lowermost mantle from tomographic-geodynamic model comparisons

    No full text
    Lower mantle tomography models consistently feature an increase in the ratio of shear-wave velocity (VS) to compressional-wave velocity (VP) variations and a negative correlation between shear-wave and bulk-sound velocity (VC) variations. These seismic characteristics, also observed in the recent SP12RTS model, have been interpreted to be indicative of large-scale chemical variations. Other explanations, such as the lower mantle post-perovskite (pPv) phase, which would not require chemical heterogeneity, have been explored less. Constraining the origin of these seismic features is important, as geodynamic simulations predict a fundamentally different style of mantle convection under both scenarios. Here, we investigate to what extent the presence of pPv explains the observed high VS/VP ratios and negative VS–VC correlation globally. We compare the statistical properties of SP12RTS with the statistics of synthetic tomography models, derived from both thermal and thermochemical models of 3-D global mantle convection. We convert the temperature fields of these models into seismic velocity structures using mineral physics lookup tables with and without pPv. We account for the limited tomographic resolution of SP12RTS using its resolution operator for both VS and VP structures. This allows for direct comparisons of the resulting velocity ratios and correlations. Although the tomographic filtering significantly affects the synthetic tomography images, we demonstrate that the effect of pPv remains evident in the ratios and correlations of seismic velocities. We find that lateral variations in the presence of pPv have a dominant influence on the VS/VP ratio and VS–VC correlation, which are thus unsuitable measures to constrain the presence of large-scale chemical variations in the lowermost mantle. To explain the decrease in the VS/VP ratio of SP12RTS close to the CMB, our results favour a pPv-bearing CMB region, which has implications for the stability field of pPv in the Earth's mantle

    Constraints on the presence of post-perovskite in Earth's lowermost mantle from tomographic-geodynamic model comparisons

    No full text
    Lower mantle tomography models consistently feature an increase in the ratio of shear-wave velocity () to compressional-wave velocity () variations and a negative correlation between shear-wave and bulk-sound velocity () variations. These seismic characteristics, also observed in the recent SP12RTS model, have been interpreted to be indicative of large-scale chemical variations. Other explanations, such as the lower mantle post-perovskite (pPv) phase, which would not require chemical heterogeneity, have been explored less. Constraining the origin of these seismic features is important, as geodynamic simulations predict a fundamentally different style of mantle convection under both scenarios. Here, we investigate to what extent the presence of pPv explains the observed high ratios and negative – correlation globally. We compare the statistical properties of SP12RTS with the statistics of synthetic tomography models, derived from both thermal and thermochemical models of 3-D global mantle convection. We convert the temperature fields of these models into seismic velocity structures using mineral physics lookup tables with and without pPv. We account for the limited tomographic resolution of SP12RTS using its resolution operator for both and structures. This allows for direct comparisons of the resulting velocity ratios and correlations. Although the tomographic filtering significantly affects the synthetic tomography images, we demonstrate that the effect of pPv remains evident in the ratios and correlations of seismic velocities. We find that lateral variations in the presence of pPv have a dominant influence on the / ratio and – correlation, which are thus unsuitable measures to constrain the presence of large-scale chemical variations in the lowermost mantle. To explain the decrease in the / ratio of SP12RTS close to the CMB, our results favour a pPv-bearing CMB region, which has implications for the stability field of pPv in the Earth's mantle

    Mantle plumes and their role in Earth processes

    No full text
    corecore