68 research outputs found

    Interdisciplinary Perspectives on Poverty Measurement, Epistemic Injustices and Social Activism

    Get PDF
    As we enter the 2020s, global poverty is still a grave and persistent problem. Alleviating and eradicating poverty within and across the world’s societies requires a thorough understanding of its nature and extent. Although economists still standardly measure absolute and relative poverty in monetary terms, a consensus is emerging that poverty is a socially relational problem involving deprivations in multiple dimensions, including health, standard of living, education and political participation. The anthology Dimensions of Poverty advances the interdisciplinary debate on multidimensional poverty, and features contributions from leading international experts and early career researchers (including from the Global South). This introductory chapter gives an overview of formative debates, central concepts and key findings. While monetary poverty measures are still dominant in public and academic debate, their explanatory power has been drawn into question. We discuss relevant criticisms before outlining the normative concepts that can inform both multidimensional poverty and monetary measures, including basic capabilities, basic needs and social primary goods. Next, we introduce several influential multidimensional poverty indices, including the Human Development Index and the Multidimensional Poverty Index. The anthology shows in detail how such measures can be improved, from a variety of disciplinary perspectives. It shows that there are different methods of poverty research that require further investigation, including participatory studies, (value) surveys, public consensus building, the constitutional approach, and financial diaries. Finally, we show that there is an ongoing problem of epistemic asymmetries in global poverty research, and discuss responsibility for addressing poverty, including the responsibilities of academics. The remainder of the chapter is dedicated to a more detailed preview of the volume’s 20 contributions, which are assembled along the following five themes: (I) poverty as a social relation; (II) epistemic injustices in poverty research; (III) the social context of poverty; (IV) measuring multidimensional poverty; and (V) country cases

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γppπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction

    Full text link
    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ+pK++Λ\vec\gamma + p \to K^+ + \vec\Lambda and γ+pK++Σ0\vec\gamma + p \to K^+ + \vec\Sigma^0. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies WW between 1.6 and 2.53 GeV, and for 0.85<cosθK+c.m.<+0.95-0.85<\cos\theta_{K^+}^{c.m.}< +0.95. For the Λ\Lambda, the polarization transfer coefficient along the photon momentum axis, CzC_z, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, CxC_x, is smaller than CzC_z by a roughly constant difference of unity. Most significantly, the {\it total} Λ\Lambda polarization vector, including the induced polarization PP, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the Σ0\Sigma^0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review

    Histo-Blood Group Gene Polymorphisms as Potential Genetic Modifiers of Infection and Cystic Fibrosis Lung Disease Severity

    Get PDF
    The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    Machine Learning Approach for Prescriptive Plant Breeding

    Get PDF
    We explored the capability of fusing high dimensional phenotypic trait (phenomic) data with a machine learning (ML) approach to provide plant breeders the tools to do both in-season seed yield (SY) prediction and prescriptive cultivar development for targeted agro-management practices (e.g., row spacing and seeding density). We phenotyped 32 SoyNAM parent genotypes in two independent studies each with contrasting agro-management treatments (two row spacing, three seeding densities). Phenotypic trait data (canopy temperature, chlorophyll content, hyperspectral reflectance, leaf area index, and light interception) were generated using an array of sensors at three growth stages during the growing season and seed yield (SY) determined by machine harvest. Random forest (RF) was used to train models for SY prediction using phenotypic traits (predictor variables) to identify the optimal temporal combination of variables to maximize accuracy and resource allocation. RF models were trained using data from both experiments and individually for each agro-management treatment. We report the most important traits agnostic of agro-management practices. Several predictor variables showed conditional importance dependent on the agro-management system. We assembled predictive models to enable in-season SY prediction, enabling the development of a framework to integrate phenomics information with powerful ML for prediction enabled prescriptive plant breeding

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for Pion Electroproduction in the Roper Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of σLT\sigma_{LT^\prime} in the N(1440)1/2+N(1440){1/2}^+ (Roper) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2 for both the π0p\pi^0 p and π+n\pi^+ n channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The σLT(π+n)\sigma_{LT^\prime}(\pi^+ n) channel shows a large sensitivity to the Roper resonance multipoles M1M_{1-} and S1S_{1-} and provides new constraints on models of resonance formation.Comment: 5 pages, 3 figures. Revised manuscript accepted by Physical Review C (Brief Report

    Ratios of 15N/12C and 4He/12C inclusive electroproduction cross sections in the nucleon resonance region

    Full text link
    The (W,Q2)-dependence of the ratio of inclusive electron scattering cross sections for 15N/12C was determined in the kinematic range 0.8<W<2 GeV and 0.2<Q2<1 GeV2 using 2.285 GeV electrons and the CLAS detector at Jefferson Lab. The ratios exhibit only slight resonance structure, in agreement with a simple phenomenological model and an extrapolation of DIS ratios to low Q2. Ratios of 4He/12C using 1.6 to 2.5 GeV electrons were measured with very high statistical precision, and were used to correct for He in the N and C targets. The (W,Q2) dependence of the 4He/12C ratios is in good agreement with the phenomenological model, and exhibit significant resonance structure centered at W=0.94, 1.23 and 1.5 GeV.Comment: 13 pages, 2 figures. Significantly shortened version. Results unchanged. Small additions for Phys. Rev.

    Separated Structure Functions for the Exclusive Electroproduction of K+ΛK^+\Lambda and K+Σ0K^+\Sigma^0 Final States

    Full text link
    We report measurements of the exclusive electroproduction of K+ΛK^+\Lambda and K+Σ0K^+\Sigma^0 final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σT\sigma_T, σL\sigma_L, σTT\sigma_{TT}, and σLT\sigma_{LT} were extracted from the Φ\Phi- and ϵ\epsilon-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first σL/σT\sigma_L/\sigma_T separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from 0.5Q22.80.5\leq Q^2\leq 2.8 GeV2^2 and invariant energy from 1.6W2.41.6\leq W\leq 2.4 GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the Λ\Lambda and Σ0\Sigma^0 hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.Comment: 61 pages, 26 figures, 5 table
    corecore