10 research outputs found

    Detection of microorganisms using terahertz metamaterials

    No full text
    Microorganisms such as fungi and bacteria cause many human diseases and therefore rapid and accurate identification of these substances is essential for effective treatment and prevention of further infections. In particular, contemporary microbial detection technique is limited by the low detection speed which usually extends over a couple of days. Here we demonstrate that metamaterials operating in the terahertz frequency range shows promising potential for use in fabricating the highly sensitive and selective microbial sensors that are capable of high-speed on-site detection of microorganisms in both ambient and aqueous environments. We were able to detect extremely small amounts of the microorganisms, because their sizes are on the same scale as the micro-gaps of the terahertz metamaterials. The resonant frequency shift of the metamaterials was investigated in terms of the number density and the dielectric constants of the microorganisms, which was successfully interpreted by the change in the effective dielectric constant of a gap area

    Bare soil cover and arbuscular mycorrhizal community in the first montane forest restoration in Central Argentina

    No full text
    Soil erosion affects extensive areas worldwide and must be urgently reduced promoting plant cover and beneficial microorganisms associated with plants, including arbuscular mycorrhizal fungi (AMF). In mountain environments, plant cover is difficult to enhance due to harsh conditions during the dry season and steep slopes. Our objective was to evaluate the percentage of the soil surface covered by plants and the AMF community associated with trees 12.5 years after planting during forest restoration efforts in microsites at different levels of soil degradation. The study was performed in the first montane forest restoration initiative of Central Argentina, where one of the trials consisted of planting Polylepis australis saplings at microsites with different levels of soil degradation: high, intermediate, and low. After 12.5 years, percentage of bare soil cover was significantly reduced by 36 and 37% in the high and intermediate degradation microsites, respectively. Low degradation microsites were initially very low in bare soil and did not significantly change. Mycorrhizal colonization, hyphae, vesicles, arbuscules, AMF diversity, and community structure were similar among microsite types. Percentage of hyphal entry points was higher at microsites with low degradation, number of spores was higher in high and intermediate degradation, and species richness was higher in high degradation. Acaulospora and Glomus were the most abundant genera in all microsites. We conclude that even in the most degraded microsites around 2.8% of the bare soil is covered by vegetation each year and that the arbuscular mycorrhizal community is highly tolerant and adapted to soils with different disturbance types.Fil: Becerra, Alejandra Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Divan, Adriana Carina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Renison, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin

    Introduction

    No full text
    corecore