63 research outputs found

    Dopaminergic Activation of Estrogen Receptors Induces Fos Expression within Restricted Regions of the Neonatal Female Rat Brain

    Get PDF
    Steroid receptor activation in the developing brain influences a variety of cellular processes that endure into adulthood, altering both behavior and physiology. Recent data suggests that dopamine can regulate expression of progestin receptors within restricted regions of the developing rat brain by activating estrogen receptors in a ligand-independent manner. It is unclear whether changes in neuronal activity induced by dopaminergic activation of estrogen receptors are also region specific. To investigate this question, we examined where the dopamine D1-like receptor agonist, SKF 38393, altered Fos expression via estrogen receptor activation. We report that dopamine D1-like receptor agonist treatment increased Fos protein expression within many regions of the developing female rat brain. More importantly, prior treatment with an estrogen receptor antagonist partially reduced D1-like receptor agonist-induced Fos expression only within the bed nucleus of the stria terminalis and the central amygdala. These data suggest that dopaminergic activation of estrogen receptors alters neuronal activity within restricted regions of the developing rat brain. This implies that ligand-independent activation of estrogen receptors by dopamine might organize a unique set of behaviors during brain development in contrast to the more wide spread ligand activation of estrogen receptors by estrogen

    Printable all-dielectric water-based absorber

    Get PDF
    Abstract The phase interplay between overlapping electric and magnetic dipoles of equal amplitude generated by exclusively alldielectric structures presents an intriguing paradigm in the manipulation of electromagnetic energy. Here, we offer a holistic implementation by proposing an additive manufacturing route and associated design principles that enable the programming and fabrication of synthetic multi-material microstructures. In turn, we compose, manufacture and experimentally validate the first demonstrable 3d printed all-dielectric electromagnetic broadband absorbers that point the way to circumventing the technical limitations of conventional metal-dielectric absorber configurations. One of the key innovations is to judicially distribute a dispersive soft matter with a high-dielectric constant, such as water, in a low-dielectric matrix to enhance wave absorption at a reduced length scale. In part, these results extend the promise of additive manufacturing and illustrate the power of topology optimisation to create carefully crafted magnetic and electric responses that are sure to find new applications across the electromagnetic spectrum

    Outlook for inverse design in nanophotonics

    Full text link
    Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from a recap of foundational results to motivation of emerging applications in nonlinear, topological, near-field and on-chip optics.Comment: 13 pages, 6 figure

    Aging science comes of age

    No full text

    Investment casting and experimental testing of heat sinks designed by topology optimization

    No full text
    Topology optimization (TO) is an attractive numerical tool to obtain optimized engineering designs, which has been originally developed for mechanical optimization and extended to the area of conjugate heat transfer. With rapid developments in topology optimization models, promising designs have been proposed and presented recently for conjugate heat transfer problems. However, only a very small number of experimental validations of TO heat transfer devices have been reported. In this paper, investment casting (IC) using 3D stereolithography (SLA) printed patterns is proposed to fabricate 3D metal heat transfer devices designed by TO. Three heat sinks for natural convection are designed by a previously reported topology optimization model and five reference pin-fin heat sinks are devised for comparison. From those designs six heat sinks are cast in Britannia metal, fully reproducing the complex 3D optimized designs. It shows that SLA-assisted IC is a very promising technology with low cost and high accuracy for fabricating TO metal parts, which is not limited to heat transfer devices and can be extended to other areas such as structural optimization. A natural convection experimental setup is used to experimentally study the performance of the fabricated heat sinks. The results show that the tested TO heat sinks can always realize the best heat dissipation performance compared to pin-fin heat sinks, when operating under the conditions used for the optimization. Moreover, validation simulations have been conducted to investigate the temperature distribution, fluid flow pattern and local heat transfer coefficient for the TO and pin-fin designs, further evidencing that TO designs always perform better under the design conditions. In addition, the impact of heat sink orientation and radiation are presented. (C) 2018 Elsevier Ltd. All rights reserved
    • …
    corecore