2 research outputs found

    Arene-fused 1,2-oxazole N-oxides and derivatives. The impact of the N-O dipole and substitution on their aromatic character and reactivity profile. Can it be a useful structure in synthesis? A theoretical insight

    No full text
    DFT calculations have shown that the N-O dipole of benzene- and naphthalene-fused 1,2-oxazole N-oxides causes a distortion of their σ and π frame, concentrated on the 1,2-oxazole ring, such that it increases its susceptibility to opening. The distortion forces the benzene ring into some diene geometry, thus, reducing π delocalization over the bi- or tricyclic structure and ultimately their aromatic character. C-3 substitution has a marked influence mainly on the naphthalene-fused N-oxides. C-5 and particularly C-6 substitution, as the position of most extended interaction with the N-O dipole through the π ring density, contribute to the distortion of the 1,2-oxazole geometry and thereby to the decrease of aromaticity of the structure. Bond uniformity (IA), average bond order (ABO) and Harmonic Oscillator Model of Aromaticity (HOMA) indices have been recruited to measure aromaticity changes. IA and ABO appear to be more credible to 1,2-benzoxazole N-oxides and 1,2-naphthoxazole N-oxides, respectively, while HOMA has been found equally reliable to both. Hardness and dipole moments follow similar trends. Energies, localization and separation of the four frontiers orbitals, i.e. HO, HO-1, and LU, LU+1, indicate a rather notable aromatic character of the N-oxides. Their reactivity profile, portrayed by descriptors such as Fukui and electro(nucleo)philicity Parr functions, shows good agreement with experimental outcomes towards electrophiles but succumbs to discrepancies towards nucleophiles due to the susceptibility of the hetero-ring to opening. The "push-pull" character of the N-O dipole and more importantly the extent of its double bonding direct site selectivity.Peer reviewe

    Climate Change and Weeds of Cropping Systems

    No full text
    The impacts of weeds in cropping systems are diverse and costly. Direct expenditure on control and biosecurity measures costs society billions each year. Even with such heavy investment in prevention and control, weeds continue to reduce the quality and quantity of agricultural produce and represent a significant threat to global food production. The challenge of managing weeds in cropping systems is rendered increasingly complex given the diverse and unpredictable impacts of climate change on both weeds and crops. Atmospheric CO2, temperature and precipitation are key drivers of plant growth, and weeds, like all other plant species, will need to respond to climate change in order to survive. Weed species are by their very nature survivors, able to relocate, acclimate or adapt to changing environmental conditions, with genetic diversity that could confer a natural competitive advantage over crop species. Conversely, modern crops are the result of extensive and highly sophisticated breeding to improve their genetic potential to survive in challenging conditions, including herbicide application, limited soil moisture and high temperatures. Moreover, agricultural weeds evolve in highly managed environments, and management intervention through crop selection, crop planting strategies and weed control measures may exert stronger selection pressures on weed species relative to climate change. It is, however, reasonable to assert that evolution driven by management pressures could occur simultaneously to climate-driven adaptation. For this reason, even given the rapid advancement of increasingly sophisticated weed control technology, weed management now and in the future should be guided a sound understanding of evolutionary biology
    corecore