4 research outputs found

    Estimation of the Optimal Statistical Quality Control Sampling Time Intervals Using a Residual Risk Measure

    Get PDF
    Background: An open problem in clinical chemistry is the estimation of the optimal sampling time intervals for the application of statistical quality control (QC) procedures that are based on the measurement of control materials. This is a probabilistic risk assessment problem that requires reliability analysis of the analytical system, and the estimation of the risk caused by the measurement error. Methodology/Principal Findings: Assuming that the states of the analytical system are the reliability state, the maintenance state, the critical-failure modes and their combinations, we can define risk functions based on the mean time of the states, their measurement error and the medically acceptable measurement error. Consequently, a residual risk measure rr can be defined for each sampling time interval. The rr depends on the state probability vectors of the analytical system, the state transition probability matrices before and after each application of the QC procedure and the state mean time matrices. As optimal sampling time intervals can be defined those minimizing a QC related cost measure while the rr is acceptable. I developed an algorithm that estimates the rr for any QC sampling time interval of a QC procedure applied to analytical systems with an arbitrary number of critical-failure modes, assuming any failure time and measurement error probability density function for each mode. Furthermore, given the acceptable rr, it can estimate the optimal QC sampling time intervals

    Pengembangan Sumberdaya Manusia

    No full text

    Integrated Production and Maintenance Scheduling Through Machine Monitoring and Augmented Reality: An Industry 4.0 Approach

    No full text
    Part 5: Sustainable Human Integration in Cyber-Physical Systems: The Operator 4.0International audienceMaintenance tasks are a frequent part of shop floor machines’ schedule, varying in complexity, and as a result in required time and effort, from simple cutting tool replacement to time consuming procedures. Nowadays, these procedures are usually called by the machine operator or shop floor technicians, based on their expertise or machine failures, commonly without flagging the shop floor scheduling. Newer approaches promote mobile devices and wearables as a mean of communication among the shop floor operators and other departments, to quickly notify for similar incidents. Shop floor scheduling is frequently highly influenced by maintenance tasks, thus the need to include them into the machine schedule has arisen. Moreover, production is highly disturbed by unexpected failures. As a result, the last few years through the industry 4.0 paradigm, production line machinery is more and more equipped with monitoring software, so as to flag the technicians before a maintenance task is required. Towards that end, an integrated system is developed, under the Industry 4.0 concept, consisted of a machine tool monitoring tool and an augmented reality mobile application, which are interfaced with a shop-floor scheduling tool. The mobile application allows the operator to monitor the status of the machine based on the data from the monitoring tool and decide on immediately calling AR remote maintenance or scheduling maintenance tasks for later. The application retrieves the machine schedule, providing the available windows for maintenance planning and also notifies the schedule for the added task. The application is tested on a CNC milling machine
    corecore