2,277 research outputs found
Lifestyle factors and ovarian cancer outcomes
Purpose: Few studies have reported on the lifestyle characteristics of ovarian cancer survivors. The objectives of this study were to characterize the associations between physical activity (PA) and body size (BS) with health-related quality of life (HRQOL) and ovarian cancer recurrence in a sample of regional and distal stage ovarian cancer survivors.
Methods: Epithelial ovarian cancer survivors in their first clinical remission, with no evidence of recurrent disease were identified from The University of Texas MD Anderson Cancer Center tumor registry. A total of 51 survivors consented to participate in a battery of self-reported questionnaires. Trained staff collected data on anthropometric and recurrence data were collected from the tumor registry. Generalized linear models were used to assess the relationship between PA, BS, and HRQOL. Cox proportional hazard models were used to assess the associations between PA, BS, and recurrence-free survival.
Results: Most (59%) women were overweight or obese (BMI \u3c 25 kg/m2) , 49% met current guidelines for PA (150 minutes of moderate to vigorous PA/week), and 29% displayed characteristics of abdominal obesity (\u3e88 centimeters). Women who were not obese reported significantly higher (better) overall HRQOL (point difference = 10.8, P \u3c 0.05) and mental health (point difference = 12.4, P \u3c 0.05) scores than women who were obese. Elevated waist circumference and physical activity were not significantly associated with HRQOL outcomes and we did not find any associations between lifestyle behaviors and recurrence free survival (all P \u3e 0.05).
Conclusions: Ovarian cancer survivors with characteristics of overall and abdominal obesity may be at risk for deficits in HRQOL and could benefit from interventions designed to reduce weight. More research is needed to determine whether meeting guidelines for physical activity is associated with improvements in health outcomes this population
Absorbing Roots Areas and Transpiring Leaf Areas at the Tropical Forest and Savanna Boundary in Brazil
© Copyright 2014 Nova Science PublishersThis is the prepublication draft of a chapter published by Nova Science Publishers in the book Savannas: Climate, Biodiversity and Ecological Significance, published in 2013. Available to purchase at https://www.novapublishers.com/catalog/product_info.php?products_id=39734TROBIT Project (Tropical Biomes in Transition
Bodily relations and reciprocity in the art of Sonia Khurana
This article explores the significance of the ‘somatic’ and ‘ontological turn’ in locating the radical politics articulated in the contemporary performance, installation, video and digital art practices of New Delhi-based artist, Sonia Khurana (b. 1968). Since the late 1990s Khurana has fashioned a range of artworks that require new sorts of reciprocal and embodied relations with their viewers. While this line of art practice suggests the need for a primarily philosophical mode of inquiry into an art of the body, such affective relations need to be historicised also in relation to a discursive field of ‘difference’ and public expectations about the artist’s ethnic, gendered and national identity. Thus, this intimate, visceral and emotional field of inter- and intra-action is a novel contribution to recent transdisciplinary perspectives on the gendered, social and sentient body, that in turn prompts a wider debate on the ethics of cultural commentary and art historiography
Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System
The study of extra-solar planetary systems has emerged as a new discipline of
observational astronomy in the past few years with the discovery of a number of
extra-solar planets. The properties of most of these extra-solar planets were
not anticipated by theoretical work on the formation of planetary systems. Here
we report observations and light curve modeling of gravitational microlensing
event MACHO-97-BLG-41, which indicates that the lens system consists of a
planet orbiting a binary star system. According to this model, the mass ratio
of the binary star system is 3.8:1 and the stars are most likely to be a late K
dwarf and an M dwarf with a separation of about 1.8 AU. A planet of about 3
Jupiter masses orbits this system at a distance of about 7 AU. If our
interpretation of this light curve is correct, it represents the first
discovery of a planet orbiting a binary star system and the first detection of
a Jovian planet via the gravitational microlensing technique. It suggests that
giant planets may be common in short period binary star systems.Comment: 11 pages, with 1 color and 2 b/w Figures included (published version
Fibronectin matrix-mediated cohesion suppresses invasion of prostate cancer cells
<p>Abstract</p> <p>Background</p> <p>Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion - a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5β1 integrin - the principle mediator of fibronectin matrix assembly (FNMA) - as an invasion suppressor of prostate cancer cells.</p> <p>Methods</p> <p>Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA.</p> <p>Results</p> <p>We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5β1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment.</p> <p>Conclusions</p> <p>We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.</p
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
Study of Zγ events and limits on anomalous ZZγ and Zγγ couplings in pp̄ collisions at s=1.96TeV
We present a measurement of the Zγ production cross section and limits on anomalous ZZγ and Zγγ couplings for form-factor scales of Λ=750 and 1000 GeV. The measurement is based on 138 (152) candidates in the eeγ (μμγ) final state using 320(290)pb-1 of pp̄ collisions at s=1.96TeV. The 95% C.L. limits on real and imaginary parts of individual anomalous couplings are |h10,30Z|<0.23, |h20,40Z|<0.020, |h10,30γ|<0.23, and |h20,40γ|<0.019 for Λ=1000GeV. © 2005 The American Physical Society
- …