1,959 research outputs found
Collective excitations in a fermion-fermion mixture with different Fermi surfaces
In this paper, collective excitations in a homogeneous fermion-fermion
mixture with different Fermi surfaces are studied. In the Fermi liquid phase,
the zero-sound velocity is found to be larger than the largest Fermi velocity.
With attractive interactions, the superfluid phase appears below a critical
temperature, and the phase mode is the low-energy collective excitation. The
velocity of the phase mode is proportional to the geometric mean of the two
Fermi velocities. The difference between the two velocities may serve as a tool
to detect the superfluid phase.Comment: 4 pages. To be published in Phys. Rev.
Effects of the trapping potential on a superfluid atomic Fermi Gas
We examine a dilute two-component atomic Fermi gas trapped in a harmonic
potential in the superfluid phase. For experimentally realistic parameters, the
trapping potential is shown to have crucial influence on various properties of
the gas. Using an effective hamiltonian, analytical results for the critical
temperature, the temperature dependence of the superfluid gap, and the energy
of the lowest collective modes are derived. These results are shown to agree
well with numerical calculations. We furthermore discuss in more detail a
previous proposed method to experimentally observe the superfluid transition by
looking at the collective mode spectrum. Our results are aimed at the present
experimental effort to observe a superfluid phase transition in a trapped
atomic Fermi gas.Comment: 2. revised version. Minor mistakes in equation references corrected.
To appear in Phys. Rev.
Mecillinam susceptibility as an indicator of β-lactamase production in Staphylococcus aureus
AbstractThe use of direct susceptibility testing from specimens has led to the fortuitous observation that penicillin-susceptible strains have larger inhibition zones for mecillinam than do β-lactamase producers. The current study was, therefore, undertaken to test 179 Staphylococcus aureus isolates for mecillinam susceptibility by Rosco Neo-Sensitabs and to compare the results with commonly used tests for β-lactamase production, i.e. size and character of penicillin inhibition zones, chromogenic cephalosporin (nitrocefin) tests and clover leaf assays. Agreement between methods was reached for 175 of 179 strains when disregarding the results of the nitrocefin tests, 88 isolates being found susceptible and 87 being found to be β-lactamase producers. All 88 susceptible isolates had mecillinam zones of >22 mm, with the great majority being >25 mm; double zones did, however, occur. The 87 β-lactamase producers had zones <14 mm or no zones. Four isolates presenting problems in had mecillinam zones of ≤20 mm and were without tapering growth at the penicillin inhibition zone edge. In conclusion, the size of the mecillinam inhibition zone is found to be a useful supplementary test in the clinically important distinction between β-lactamase-producing and non-producing isolates of S. aureus
Ideal Gases in Time-Dependent Traps
We investigate theoretically the properties of an ideal trapped gas in a
time-dependent harmonic potential. Using a scaling formalism, we are able to
present simple analytical results for two important classes of experiments:
free expansion of the gas upon release of the trap; and the response of the gas
to a harmonic modulation of the trapping potential is investigated. We present
specific results relevant to current experiments on trapped Fermions.Comment: 5 pages, 3 eps figure
Cooper pairing and single particle properties of trapped Fermi gases
We calculate the elementary excitations and pairing of a trapped atomic Fermi
gas in the superfluid phase. The level spectra and pairing gaps undergo several
transitions as the strength of the interactions between and the number of atoms
are varied. For weak interactions, the Cooper pairs are formed between
particles residing in the same harmonic oscillator shell. In this regime, the
nature of the paired state is shown to depend critically on the position of the
chemical potential relative to the harmonic oscillator shells and on the size
of the mean field. For stronger interactions, we find a region where pairing
occur between time-reversed harmonic oscillator states in different shells
also.Comment: Slightly revised version: Mistakes in equation references in figures
corrected. Accepted for Phys. Rev.
Hartree-Fock-Bogoliubov theory versus local-density approximation for superfluid trapped fermionic atoms
We investigate a gas of superfluid fermionic atoms trapped in two hyperfine
states by a spherical harmonic potential. We propose a new regularization
method to remove the ultraviolet divergence in the Hartree-Fock-Bogoliubov
equations caused by the use of a zero-range atom-atom interaction. Compared
with a method used in the literature, our method is simpler and has improved
convergence properties. Then we compare Hartree-Fock-Bogoliubov calculations
with the semiclassical local-density approximation. We observe that for systems
containing a small number of atoms shell effects, which cannot be reproduced by
the semiclassical calculation, are very important. For systems with a large
number of atoms at zero temperature the two calculations are in quite good
agreement, which, however, is deteriorated at non-zero temperature, especially
near the critical temperature. In this case the different behavior can be
explained within the Ginzburg-Landau theory.Comment: 12 pages, 8 figures, revtex; v2: references and clarifying remarks
adde
Spin Excitations in a Fermi Gas of Atoms
We have experimentally investigated a spin excitation in a quantum degenerate
Fermi gas of atoms. In the hydrodynamic regime the damping time of the
collective excitation is used to probe the quantum behavior of the gas. At
temperatures below the Fermi temperature we measure up to a factor of 2
reduction in the excitation damping time. In addition we observe a strong
excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure
Inducing spin-dependent tunneling to probe magnetic correlations in optical lattices
We suggest a simple experimental method for probing antiferromagnetic spin
correlations of two-component Fermi gases in optical lattices. The method
relies on a spin selective Raman transition to excite atoms of one spin species
to their first excited vibrational mode where the tunneling is large. The
resulting difference in the tunneling dynamics of the two spin species can then
be exploited, to reveal the spin correlations by measuring the number of doubly
occupied lattice sites at a later time. We perform quantum Monte Carlo
simulations of the spin system and solve the optical lattice dynamics
numerically to show how the timed probe can be used to identify
antiferromagnetic spin correlations in optical lattices.Comment: 5 pages, 5 figure
- …