31,876 research outputs found

    Above-room-temperature ferromagnetism in half-metallic Heusler compounds NiCrP, NiCrSe, NiCrTe and NiVAs: A first-principles study

    Full text link
    We study the interatomic exchange interactions and Curie temperatures in half-metallic semi Heusler compounds NiCrZ (Z=P, Se, Te) and NiVAs. The study is performed within the framework of density functional theory. The calculation of exchange parameters is based on the frozen-magnon approach. It is shown that the exchange interactions in NiCrZ vary strongly depending on the Z constituent. The Curie temperature, Tc, is calculated within the mean field and random phase approximations. The difference between two estimations is related to the properties of the exchange interactions. The predicted Curie temperatures of all four systems are considerably higher than room temperature. The relation between the half-metallicity and the value of the Curie temperature is discussed. The combination of a high spin-polarization of charge carriers and a high Curie temperature makes these Heusler alloys interesting candidates for spintronics applications.Comment: 6 pages, 3 figure

    Quasi-particle dephasing time in disordered d-wave superconductors

    Full text link
    We evaluate the low-temperature cutoff for quantum interference 1/tf induced in a d-wave superconductor by the diffusion enhanced quasiparticle interactions in the presence of disorder. We carry out our analysis in the framework of the non-linear sigma-model which allows a direct calculation of 1/tf, as the mass of the transverse modes of the theory. Only the triplet amplitude in the particle-hole channel and the Cooper amplitude with is pairing symmetry contribute to 1/tf. We discuss the possible relevance of our results to the present disagreement between thermal transport data in cuprates and the localization theory for d-wave quasiparticles

    Stability of ferromagnetism in the half-metallic pnictides and similar compounds: A first-principles study

    Full text link
    Based on first-principles electron structure calculations and employing the frozen-magnon approximation we study the exchange interactions in a series of transition-metal binary alloys crystallizing in the zinc-blende structure and calculate the Curie temperature within both the mean-field approximation (MFA) and random-phase approximation (RPA). We study two Cr compounds, CrAs and CrSe, and four Mn compounds: MnSi, MnGe, MnAs and MnC. MnC, MnSi and MnGe are isovalent to CrAs and MnAs is isoelectronic with CrSe. Ferromagnetism is particular stable for CrAs, MnSi and MnGe: All three compounds show Curie temperatures around 1000 K. On the other hand, CrSe and MnAs show a tendency to antiferromagnetism when compressing the lattice. In MnC the half-metallic gap is located in the majority-spin channel contrary to the other five compounds. The large half-metallic gaps, very high Curie temperatures, the stability of the ferromagnetism with respect to the variation of the lattice parameter and a coherent growth on semiconductors make MnSi and CrAs most promising candidates for the use in spintronics devises.Comment: 17 pages, 6 figure

    Ab initio study of mirages and magnetic interactions in quantum corrals

    Full text link
    The state of the art ab initio calculations of quantum mirages,the spin-polarization of surface-state electrons and the exchange interaction between magnetic adatoms in Cu and Co corrals on Cu(111) are presented. We find that the spin-polarization of the surface-state electrons caused by magnetic adatoms can be projected to a remote location and can be strongly enhanced in corrals compared to an open surface.Our studies give a clear evidence that quantum corrals could permit to tailor the exchange interaction between magnetic adatoms at large separations. The spin-polarization of surface-state electrons at the empty focus in the Co corral used in the experimental setup of Manoharan et al., (Nature 403, 512 (2000)) is revealed.Comment: Submitted to Physical Review Letter

    Supernova cosmology: legacy and future

    Full text link
    The discovery of dark energy by the first generation of high-redshift supernova surveys has generated enormous interest beyond cosmology and has dramatic implications for fundamental physics. Distance measurements using supernova explosions are the most direct probes of the expansion history of the Universe, making them extremely useful tools to study the cosmic fabric and the properties of gravity at the largest scales. The past decade has seen the confirmation of the original results. Type Ia supernovae are among the leading techniques to obtain high-precision measurements of the dark energy equation of state parameter, and in the near future, its time dependence. The success of these efforts depends on our ability to understand a large number of effects, mostly of astrophysical nature, influencing the observed flux at Earth. The frontier now lies in understanding if the observed phenomenon is due to vacuum energy, albeit its unnatural density, or some exotic new physics. Future surveys will address the systematic effects with improved calibration procedures and provide thousands of supernovae for detailed studies.Comment: Invited review, Annual Review of Nuclear and Particle Science (submitted version

    The 2-Dimensional Quantum Euclidean Algebra

    Full text link
    The algebra dual to Woronowicz's deformation of the 2-\-di\-men\-sion\-al Euclidean group is constructed. The same algebra is obtained from SUq(2)SU_{q}(2) via contraction on both the group and algebra levels.Comment: 8 pages, LBL-31711 and UCB-PTH-92/0
    • …
    corecore