94 research outputs found
A quantum McKay correspondence for fractional 2p-branes on LG orbifolds
We study fractional 2p-branes and their intersection numbers in non-compact
orbifolds as well the continuation of these objects in Kahler moduli space to
coherent sheaves in the corresponding smooth non-compact Calabi-Yau manifolds.
We show that the restriction of these objects to compact Calabi-Yau
hypersurfaces gives the new fractional branes in LG orbifolds constructed by
Ashok et. al. in hep-th/0401135. We thus demonstrate the equivalence of the
B-type branes corresponding to linear boundary conditions in LG orbifolds,
originally constructed in hep-th/9907131, to a subset of those constructed in
LG orbifolds using boundary fermions and matrix factorization of the
world-sheet superpotential. The relationship between the coherent sheaves
corresponding to the fractional two-branes leads to a generalization of the
McKay correspondence that we call the quantum McKay correspondence due to a
close parallel with the construction of branes on non-supersymmetric orbifolds.
We also provide evidence that the boundary states associated to these branes in
a conformal field theory description corresponds to a sub-class of the boundary
states associated to the permutation branes in the Gepner model associated with
the LG orbifold.Comment: LaTeX2e, 1+39 pages, 3 figures (v2) refs added, typos and report no.
correcte
Bulk perturbations of N=2 branes
The evolution of supersymmetric A-type D-branes under the bulk
renormalization group flow between two different N=2 minimal models is studied.
Using the Landau-Ginzburg description we show that a specific set of branes
decouples from the infrared theory, and we make detailed predictions for the
behavior of the remaining branes. The Landau-Ginzburg picture is then checked
against a direct conformal field theory analysis. In particular we construct a
natural index pairing which is preserved by the RG flow, and show that the
branes that decouple have vanishing index with the surviving branes.Comment: 35 pages (30 pages plus title and references), 8 figure
Non-perturbative orientifold transitions at the conifold
After orientifold projection, the conifold singularity in hypermultiplet
moduli space of Calabi-Yau compactifications cannot be avoided by geometric
deformations. We study the non-perturbative fate of this singularity in a local
model involving O6-planes and D6-branes wrapping the deformed conifold in Type
IIA string theory. We classify possible A-type orientifolds of the deformed
conifold and find that they cannot all be continued to the small resolution.
When passing through the singularity on the deformed side, the O-plane charge
generally jumps by the class of the vanishing cycle. To decide which classical
configurations are dynamically connected, we construct the quantum moduli space
by lifting the orientifold to M-theory as well as by looking at the
superpotential. We find a rich pattern of smooth and phase transitions
depending on the total sixbrane charge. Non-BPS states from branes wrapped on
non-supersymmetric bolts are responsible for a phase transition. We also
clarify the nature of a Z_2 valued D0-brane charge in the 6-brane background.
Along the way, we obtain a new metric of G_2 holonomy corresponding to an
O6-plane on the three sphere of the deformed conifold.Comment: 76 pages, references adde
Distributions of flux vacua
We give results for the distribution and number of flux vacua of various
types, supersymmetric and nonsupersymmetric, in IIb string theory compactified
on Calabi-Yau manifolds. We compare this with related problems such as counting
attractor points.Comment: 43 pages, 7 figures. v2: improved discussion of finding vacua with
discrete flux, references adde
Fractional two-branes, toric orbifolds and the quantum McKay correspondence
We systematically study and obtain the large-volume analogues of fractional
two-branes on resolutions of orbifolds C^3/Z_n. We study a generalisation of
the McKay correspondence proposed in hep-th/0504164 called the quantum McKay
correspondence by constructing duals to the fractional two-branes. Details are
explicitly worked out for two examples -- the crepant resolutions of C^3/Z_3
and C^3/Z_5.Comment: 34 pages, 2 figures, LaTeX (JHEP3 style); (v2) typos corrected; (v3)
sec 3 reorganise
Building a Better Racetrack
We find IIb compactifications on Calabi-Yau orientifolds in which all Kahler
moduli are stabilized, along lines suggested by Kachru, Kallosh, Linde and
Trivedi.Comment: 47 pages, 1 figure, harvmac (v2: added references, minor comments,
v3: improved discussion of metastability and explicit flux vacua
Defects and Bulk Perturbations of Boundary Landau-Ginzburg Orbifolds
We propose defect lines as a useful tool to study bulk perturbations of
conformal field theories, in particular to analyse the induced renormalisation
group flows of boundary conditions. As a concrete example we investigate bulk
perturbations of N=2 supersymmetric minimal models. To these perturbations we
associate a special class of defects between the respective UV and IR theories,
whose fusion with boundary conditions indeed reproduces the behaviour of the
latter under the corresponding RG flows. v2: Some explanations added in section
4, minor changes.Comment: 37 pages, 6 figure
D-brane Deconstructions in IIB Orientifolds
With model building applications in mind, we collect and develop basic
techniques to analyze the landscape of D7-branes in type IIB compact Calabi-Yau
orientifolds, in three different pictures: F-theory, the D7 worldvolume theory
and D9-anti-D9 tachyon condensation. A significant complication is that
consistent D7-branes in the presence of O7^- planes are generically singular,
with singularities locally modeled by the Whitney Umbrella. This invalidates
the standard formulae for charges, moduli space and flux lattice dimensions. We
infer the correct formulae by comparison to F-theory and derive them
independently and more generally from the tachyon picture, and relate these
numbers to the closed string massless spectrum of the orientifold
compactification in an interesting way. We furthermore give concrete recipes to
explicitly and systematically construct nontrivial D-brane worldvolume flux
vacua in arbitrary Calabi-Yau orientifolds, illustrate how to read off D-brane
flux content, enhanced gauge groups and charged matter spectra from tachyon
matrices, and demonstrate how brane recombination in general leads to flux
creation, as required by charge conservation and by equivalence of geometric
and gauge theory moduli spaces.Comment: 49 pages, v2: two references adde
Orientifolds of K3 and Calabi-Yau Manifolds with Intersecting D-branes
We investigate orientifolds of type II string theory on K3 and Calabi-Yau
3-folds with intersecting D-branes wrapping special Lagrangian cycles. We
determine quite generically the chiral massless spectrum in terms of
topological invariants and discuss both orbifold examples and algebraic
realizations in detail. Intriguingly, the developed techniques provide an
elegant way to figure out the chiral sector of orientifold models without
computing any explicit string partition function. As a new example we derive a
non-supersymmetric Standard-like Model from an orientifold of type IIA on the
quintic Calabi-Yau 3-fold with wrapped D6-branes. In the case of supersymmetric
intersecting brane models on Calabi-Yau manifolds we discuss the D-term and
F-term potentials, the effective gauge couplings and the Green-Schwarz
mechanism. The mirror symmetric formulation of this construction is provided
within type IIB theory. We finally include a short discussion about the lift of
these models from type IIB on K3 to F-theory and from type IIA on Calabi-Yau
3-folds to M-theory on G_2 manifolds.Comment: 82 pages, harvmac, 5 figures. v2: references added. v3: T^6
orientifold corrected, JHEP versio
Counting BPS states on the Enriques Calabi-Yau
We study topological string amplitudes for the FHSV model using various
techniques. This model has a type II realization involving a Calabi-Yau
threefold with Enriques fibres, which we call the Enriques Calabi-Yau. By
applying heterotic/type IIA duality, we compute the topological amplitudes in
the fibre to all genera. It turns out that there are two different ways to do
the computation that lead to topological couplings with different BPS content.
One of them leads to the standard D0-D2 counting amplitudes, and from the other
one we obtain information about bound states of D0-D4-D2 branes on the Enriques
fibre. We also study the model using mirror symmetry and the holomorphic
anomaly equations. We verify in this way the heterotic results for the D0-D2
generating functional for low genera and find closed expressions for the
topological amplitudes on the total space in terms of modular forms, and up to
genus four. This model turns out to be much simpler than the generic B-model
and might be exactly solvable.Comment: 62 pages, v3: some results at genus 3 corrected, more typos correcte
- …