247 research outputs found
YidC and SecY mediate membrane insertion of a type I transmembrane domain
YidC has been identified recently as an evolutionary conserved factor that is involved in the integration of inner membrane proteins (IMPs) in Escherichia coli. The discovery of YidC has inspired the reevaluation of membrane protein assembly pathways in E. coli. In this study, we have analyzed the role of YidC in membrane integration of a widely used model IMP, leader peptidase (Lep). Site-directed photocross-linking experiments demonstrate that both YidC and SecY contact nascent Lep very early during biogenesis, at only 50-amino acid nascent chain length. At this length the first transmembrane domain (TM), which acquires a type I topology, is not even fully exposed outside the ribosome. The pattern of interactions appears dependent on the position of the cross-linking probe in the nascent chain. Upon elongation, nascent Lep remains close to YidC and comes into contact with lipids as well. Our results suggest a role for YidC in both the reception and lipid partitioning of type I TMs
Matrix Models, Geometric Engineering and Elliptic Genera
We compute the prepotential of N=2 supersymmetric gauge theories in four
dimensions obtained by toroidal compactifications of gauge theories from 6
dimensions, as a function of Kahler and complex moduli of T^2. We use three
different methods to obtain this: matrix models, geometric engineering and
instanton calculus. Matrix model approach involves summing up planar diagrams
of an associated gauge theory on T^2. Geometric engineering involves
considering F-theory on elliptic threefolds, and using topological vertex to
sum up worldsheet instantons. Instanton calculus involves computation of
elliptic genera of instanton moduli spaces on R^4. We study the
compactifications of N=2* theory in detail and establish equivalence of all
these three approaches in this case. As a byproduct we geometrically engineer
theories with massive adjoint fields. As one application, we show that the
moduli space of mass deformed M5-branes wrapped on T^2 combines the Kahler and
complex moduli of T^2 and the mass parameter into the period matrix of a genus
2 curve.Comment: 90 pages, Late
D-branes on general N=1 backgrounds: superpotentials and D-terms
We study the dynamics governing space-time filling D-branes on Type II flux
backgrounds preserving four-dimensional N=1 supersymmetry. The four-dimensional
superpotentials and D-terms are derived. The analysis is kept on completely
general grounds thanks to the use of recently proposed generalized
calibrations, which also allow one to show the direct link of the
superpotentials and D-terms with BPS domain walls and cosmic strings
respectively. In particular, our D-brane setting reproduces the tension of
D-term strings found from purely four-dimensional analysis. The holomorphicity
of the superpotentials is also studied and a moment map associated to the
D-terms is proposed. Among different examples, we discuss an application to the
study of D7-branes on SU(3)-structure backgrounds, which reproduces and
generalizes some previous results.Comment: 50 pages; v2: table of contents, some clarifications and references
added; v3: typos corrected and references adde
Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions
Path Integral Monte Carlo simulations have been performed for U(1) lattice
gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static
quark potential, the string tension and the low-lying "glueball" spectrum.The
Euclidean string tension and mass gap decrease exponentially at weakcoupling in
excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack,
but their magnitudes are five times bigger than predicted. Extrapolations are
made to the extreme anisotropic or Hamiltonian limit, and comparisons are made
with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure
Guideline implementation, drug sequencing, and quality of care in heart failure:design and rationale of TITRATE-HF
Aims: Current heart failure (HF) guidelines recommend to prescribe four drug classes in patients with HF with reduced ejection fraction (HFrEF). A clear challenge exists to adequately implement guideline-directed medical therapy (GDMT) regarding the sequencing of drugs and timely reaching target dose. It is largely unknown how the paradigm shift from a serial and sequential approach for drug therapy to early parallel application of the four drug classes will be executed in daily clinical practice, as well as the reason clinicians may not adhere to new guidelines. We present the design and rationale for the real-world TITRATE-HF study, which aims to assess sequencing strategies for GDMT initiation, dose titration patterns (order and speed), intolerance for GDMT, barriers for implementation, and long-term outcomes in patients with de novo, chronic, and worsening HF. Methods and results: A total of 4000 patients with HFrEF, HF with mildly reduced ejection fraction, and HF with improved ejection fraction will be enrolled in >40 Dutch centres with a follow-up of at least 3 years. Data collection will include demographics, physical examination and vital parameters, electrocardiogram, laboratory measurements, echocardiogram, medication, and quality of life. Detailed information on titration steps will be collected for the four GDMT drug classes. Information will include date, primary reason for change, and potential intolerances. The primary clinical endpoints are HF-related hospitalizations, HF-related urgent visits with a need for intravenous diuretics, all-cause mortality, and cardiovascular mortality. Conclusions: TITRATE-HF is a real-world multicentre longitudinal registry that will provide unique information on contemporary GDMT implementation, sequencing strategies (order and speed), and prognosis in de novo, worsening, and chronic HF patients.</p
Enabling global clinical collaborations on identifiable patient data: The Minerva Initiative
The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health
Contemporary guideline-directed medical therapy in de novo, chronic, and worsening heart failure patients:First data from the TITRATE-HF study
Aims: Despite clear guideline recommendations for initiating four drug classes in all patients with heart failure (HF) with reduced ejection fraction (HFrEF) and the availability of rapid titration schemes, information on real-world implementation lags behind. Closely following the 2021 ESC HF guidelines and 2023 focused update, the TITRATE-HF study started to prospectively investigate the use, sequencing, and titration of guideline-directed medical therapy (GDMT) in HF patients, including the identification of implementation barriers. Methods and results: TITRATE-HF is an ongoing long-term HF registry conducted in the Netherlands. Overall, 4288 patients from 48 hospitals were included. Among these patients, 1732 presented with de novo, 2240 with chronic, and 316 with worsening HF. The median age was 71 years (interquartile range [IQR] 63–78), 29% were female, and median ejection fraction was 35% (IQR 25–40). In total, 44% of chronic and worsening HFrEF patients were prescribed quadruple therapy. However, only 1% of HFrEF patients achieved target dose for all drug classes. In addition, quadruple therapy was more often prescribed to patients treated in a dedicated HF outpatient clinic as compared to a general cardiology outpatient clinic. In each GDMT drug class, 19% to 36% of non-use in HFrEF patients was related to side-effects, intolerances, or contraindications. In the de novo HF cohort, 49% of patients already used one or more GDMT drug classes for other indications than HF. Conclusion: This first analysis of the TITRATE-HF study reports relatively high use of GDMT in a contemporary HF cohort, while still showing room for improvement regarding quadruple therapy. Importantly, the use and dose of GDMT were suboptimal, with the reasons often remaining unclear. This underscores the urgency for further optimization of GDMT and implementation strategies within HF management.</p
Pulmonary artery pressure monitoring in chronic heart failure:effects across clinically relevant subgroups in the MONITOR-HF trial
Background and Aims:In patients with chronic heart failure (HF), the MONITOR-HF trial demonstrated the efficacy of pulmonary artery (PA)-guided HF therapy over standard of care in improving quality of life and reducing HF hospitalizations and mean PA pressure. This study aimed to evaluate the consistency of these benefits in relation to clinically relevant subgroups. Methods: The effect of PA-guided HF therapy was evaluated in the MONITOR-HF trial among predefined subgroups based on age, sex, atrial fibrillation, diabetes mellitus, left ventricular ejection fraction, HF aetiology, cardiac resynchronization therapy, and implantable cardioverter defibrillator. Outcome measures were based upon significance in the main trial and included quality of life-, clinical-, and PA pressure endpoints, and were assessed for each subgroup. Differential effects in relation to the subgroups were assessed with interaction terms. Both unadjusted and multiple testing adjusted interaction terms were presented. Results: The effects of PA monitoring on quality of life, clinical events, and PA pressure were consistent in the predefined subgroups, without any clinically relevant heterogeneity within or across all endpoint categories (all adjusted interaction P-values were non-significant). In the unadjusted analysis of the primary endpoint quality-of-life change, weak trends towards a less pronounced effect in older patients (Pinteraction = .03; adjusted Pinteraction = .33) and diabetics (Pinteraction = .01; adjusted Pinteraction = .06) were observed. However, these interaction effects did not persist after adjusting for multiple testing. Conclusions: This subgroup analysis confirmed the consistent benefits of PA-guided HF therapy observed in the MONITOR-HF trial across clinically relevant subgroups, highlighting its efficacy in improving quality of life, clinical, and PA pressure endpoints in chronic HF patients.</p
Effects of sleep deprivation on neural functioning: an integrative review
Sleep deprivation has a broad variety of effects on human performance and neural functioning that manifest themselves at different levels of description. On a macroscopic level, sleep deprivation mainly affects executive functions, especially in novel tasks. Macroscopic and mesoscopic effects of sleep deprivation on brain activity include reduced cortical responsiveness to incoming stimuli, reflecting reduced attention. On a microscopic level, sleep deprivation is associated with increased levels of adenosine, a neuromodulator that has a general inhibitory effect on neural activity. The inhibition of cholinergic nuclei appears particularly relevant, as the associated decrease in cortical acetylcholine seems to cause effects of sleep deprivation on macroscopic brain activity. In general, however, the relationships between the neural effects of sleep deprivation across observation scales are poorly understood and uncovering these relationships should be a primary target in future research
- …