65 research outputs found
First LIGO search for gravitational wave bursts from cosmic (super)strings
We report on a matched-filter search for gravitational wave bursts from
cosmic string cusps using LIGO data from the fourth science run (S4) which took
place in February and March 2005. No gravitational waves were detected in 14.9
days of data from times when all three LIGO detectors were operating. We
interpret the result in terms of a frequentist upper limit on the rate of
gravitational wave bursts and use the limits on the rate to constrain the
parameter space (string tension, reconnection probability, and loop sizes) of
cosmic string models.Comment: 11 pages, 3 figures. Replaced with version submitted to PR
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
Search for Gravitational Wave Bursts from Six Magnetars
Soft gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are thought to be magnetars: neutron stars powered by extreme magnetic fields. These rare objects are characterized by repeated and sometimes spectacular gamma-ray bursts. The burst mechanism might involve crustal fractures and excitation of non-radial modes which would emit gravitational waves (GWs). We present the results of a search for GW bursts from six galactic magnetars that is sensitive to neutron star f-modes, thought to be the most efficient GW emitting oscillatory modes in compact stars. One of them, SGR 0501+4516, is likely similar to 1 kpc from Earth, an order of magnitude closer than magnetars targeted in previous GW searches. A second, AXP 1E 1547.0-5408, gave a burst with an estimated isotropic energy >10(44) erg which is comparable to the giant flares. We find no evidence of GWs associated with a sample of 1279 electromagnetic triggers from six magnetars occurring between 2006 November and 2009 June, in GW data from the LIGO, Virgo, and GEO600 detectors. Our lowest model-dependent GW emission energy upper limits for band-and time-limited white noise bursts in the detector sensitive band, and for f-mode ringdowns (at 1090 Hz), are 3.0 x 10(44)d(1)(2) erg and 1.4 x 10(47)d(1)(2) erg, respectively, where d(1) = d(0501)/1 kpc and d(0501) is the distance to SGR 0501+4516. These limits on GW emission from f-modes are an order of magnitude lower than any previous, and approach the range of electromagnetic energies seen in SGR giant flares for the first time.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyItalian Istituto Nazionale di Fisica NucleareFrench Centre National de la Recherche ScientifiqueAustralian Research CouncilCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Educacion y CienciaConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsFoundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFoundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space Administration NNH07ZDA001-GLASTCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationRussian Space AgencyRFBR 09-02-00166aIPN JPL Y503559 (Odyssey), NASA NNG06GH00G, NASA NNX07AM42G, NASA NNX08AC89G (INTEGRAL), NASA NNG06GI896, NASA NNX07AJ65G, NASA NNX08AN23G (Swift), NASA NNX07AR71G (MESSENGER), NASA NNX06AI36G, NASA NNX08AB84G, NASA NNX08AZ85G (Suzaku), NASA NNX09AU03G (Fermi)Astronom
Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3
We report on a search for gravitational waves from coalescing compact
binaries using LIGO and Virgo observations between July 7, 2009 and October 20,
2010. We searched for signals from binaries with total mass between 2 and 25
solar masses; this includes binary neutron stars, binary black holes, and
binaries consisting of a black hole and neutron star. The detectors were
sensitive to systems up to 40 Mpc distant for binary neutron stars, and further
for higher mass systems. No gravitational-wave signals were detected. We report
upper limits on the rate of compact binary coalescence as a function of total
mass, including the results from previous LIGO and Virgo observations. The
cumulative 90%-confidence rate upper limits of the binary coalescence of binary
neutron star, neutron star- black hole and binary black hole systems are 1.3 x
10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These
upper limits are up to a factor 1.4 lower than previously derived limits. We
also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the
publication, go to:
. Also see the
announcement for this paper on ligo.org at:
<http://www.ligo.org/science/Publication-S6CBCLowMass/index.php
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data
According to general relativity a perturbed black hole will settle to a
stationary configuration by the emission of gravitational radiation. Such a
perturbation will occur, for example, in the coalescence of a black hole
binary, following their inspiral and subsequent merger. At late times the
waveform is a superposition of quasi-normal modes, which we refer to as the
ringdown. The dominant mode is expected to be the fundamental mode, l=m=2.
Since this is a well-known waveform, matched filtering can be implemented to
search for this signal using LIGO data. We present a search for gravitational
waves from black hole ringdowns in the fourth LIGO science run S4, during which
LIGO was sensitive to the dominant mode of perturbed black holes with masses in
the range of 10 Msun to 500 Msun, the regime of intermediate-mass black holes,
to distances up to 300 Mpc. We present a search for gravitational waves from
black hole ringdowns using data from S4. No gravitational wave candidates were
found; we place a 90%-confidence upper limit on the rate of ringdowns from
black holes with mass between 85 Msun and 390 Msun in the local universe,
assuming a uniform distribution of sources, of 3.2 x 10^{-5} yr^{-1} Mpc^{-3} =
1.6 x 10^{-3}yr^{-1} L_{10}^{-1}, where L_{10} is 10^{10} times the solar
blue-light luminosity.Comment: 8 pages, 6 figure
Search for gravitational-wave bursts in the first year of the fifth LIGO science run
We present the results obtained from an all-sky search for gravitational-wave
(GW) bursts in the 64-2000 Hz frequency range in data collected by the LIGO
detectors during the first year (November 2005 - November 2006) of their fifth
science run. The total analyzed livetime was 268.6 days. Multiple hierarchical
data analysis methods were invoked in this search. The overall sensitivity
expressed in terms of the root-sum-square (rss) strain amplitude h_{rss} for
gravitational-wave bursts with various morphologies was in the range of 6 times
10^{-22} Hz^{-1/2} to a few times 10^{-21} Hz^{-1/2}. No GW signals were
observed and a frequentist upper limit of 3.6 events per year on the rate of
strong GW bursts was placed at the 90% confidence level. As in our previous
searches, we also combined this rate limit with the detection efficiency for
selected waveform morphologies to obtain event rate versus strength exclusion
curves. In sensitivity, these exclusion curves are the most stringent to date.Comment: v3: various figure and text edits; submitted to PRD; 26 page
Search for High Frequency Gravitational Wave Bursts in the First Calendar Year of LIGO's Fifth Science Run
We present an all-sky search for gravitational waves in the frequency range 1
to 6 kHz during the first calendar year of LIGO's fifth science run. This is
the first untriggered LIGO burst analysis to be conducted above 3 kHz. We
discuss the unique properties of interferometric data in this regime. 161.3
days of triple-coincident data were analyzed. No gravitational events above
threshold were observed and a frequentist upper limit of 5.4 events per year on
the rate of strong gravitational wave bursts was placed at a 90% confidence
level. Implications for specific theoretical models of gravitational wave
emission are also discussed.Comment: 13 pages, accepted for publication in Physical Review
The present gravitational wave detection effort
Gravitational radiation offers a new non-electromagnetic window through which to observe the universe. The LIGO and Virgo Collaborations have completed a first joint data run with unprecedented sensitivities to gravitational waves. Results from searches in the data for a variety of astrophysical sources are presented. A second joint data run with improved detector sensitivities is underway, and soon major upgrades will be carried out to build Advanced LIGO and Advanced Virgo with expected improvements in event rates of more than 1000. In parallel there is a vigorous effort in the radio pulsar community to detect nHz gravitational waves via the timing residuals in an array of pulsars at different locations in the sky.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85430/1/jpconf10_203_012002.pd
- …