25,945 research outputs found
Minimum entropy restoration using FPGAs and high-level techniques
One of the greatest perceived barriers to the widespread use of FPGAs in image processing is the difficulty for application specialists of developing algorithms on reconfigurable hardware. Minimum entropy deconvolution (MED) techniques have been shown to be effective in the restoration of star-field images. This paper reports on an attempt to implement a MED algorithm using simulated annealing, first on a microprocessor, then on an FPGA. The FPGA implementation uses DIME-C, a C-to-gates compiler, coupled with a low-level core library to simplify the design task. Analysis of the C code and output from the DIME-C compiler guided the code optimisation. The paper reports on the design effort that this entailed and the resultant performance improvements
Restoration of star-field images using high-level languages and core libraries
Research into the use of FPGAs in Image Processing began in earnest at the beginning of the 1990s. Since then, many thousands of publications have pointed to the computational capabilities of FPGAs. During this time, FPGAs have seen the application space to which they are applicable grow in tandem with their logic densities. When investigating a particular application, researchers compare FPGAs with alternative technologies such as Digital Signal Processors (DSPs), Application-Specific Integrated Cir-cuits (ASICs), microprocessors and vector processors. The metrics for comparison depend on the needs of the application, and include such measurements as: raw performance, power consumption, unit cost, board footprint, non-recurring engineering cost, design time and design cost. The key metrics for a par-ticular application may also include ratios of these metrics, e.g. power/performance, or performance/unit cost. The work detailed in this paper compares a 90nm-process commodity microprocessor with a plat-form based around a 90nm-process FPGA, focussing on design time and raw performance. The application chosen for implementation was a minimum entropy restoration of star-field images (see [1] for an introduction), with simulated annealing used to converge towards the globally-optimum solution. This application was not chosen in the belief that it would particularly suit one technology over another, but was instead selected as being representative of a computationally intense image-processing application
Separation of Parallel Encoded Complex-Valued Slices (SPECS) From A Single Complex-Valued Aliased Coil Image
Purpose
Achieving a reduction in scan time with minimal inter-slice signal leakage is one of the significant obstacles in parallel MR imaging. In fMRI, multiband-imaging techniques accelerate data acquisition by simultaneously magnetizing the spatial frequency spectrum of multiple slices. The SPECS model eliminates the consequential inter-slice signal leakage from the slice unaliasing, while maintaining an optimal reduction in scan time and activation statistics in fMRI studies. Materials and Methods
When the combined k-space array is inverse Fourier reconstructed, the resulting aliased image is separated into the un-aliased slices through a least squares estimator. Without the additional spatial information from a phased array of receiver coils, slice separation in SPECS is accomplished with acquired aliased images in shifted FOV aliasing pattern, and a bootstrapping approach of incorporating reference calibration images in an orthogonal Hadamard pattern. Result
The aliased slices are effectively separated with minimal expense to the spatial and temporal resolution. Functional activation is observed in the motor cortex, as the number of aliased slices is increased, in a bilateral finger tapping fMRI experiment. Conclusion
The SPECS model incorporates calibration reference images together with coefficients of orthogonal polynomials into an un-aliasing estimator to achieve separated images, with virtually no residual artifacts and functional activation detection in separated images
q-Newton binomial: from Euler to Gauss
A counter-intuitive result of Gauss (formulae (1.6), (1.7) below) is made
less mysterious by virtue of being generalized through the introduction of an
additional parameter
Phosphine Functionalization of GaAs(111)A Surfaces
Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Ga surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity
The Autistic Experience of Exercising within Nature-Based Environments: An Interpretive Phenomenological Analysis
Background: The psychological impact of exercising in nature has gained considerable research attention in recent years under the heading green exercise (GE). Literature has examined specific benefits of GE, comparison between indoor and outdoor environments and has utilised different theories to understand these benefits and differences. To date no academic literature has examined the impact of GE on autistic people with a diagnoses of Aspergers Syndrome (AS) (a former term to refer to autism without an accompanying intellectual disability), and a condition characterised by hypersensitive and hyposensitive senses, intuitively it has been suggested that the natural environment might not be a compatible setting for autistic people due to its unpredictable and sensory provoking conditions.
Method: A group of four autistic males were interviewed using a semi structured interview schedule. Interviews were transcribed and then analysed using interpretive phenomenological analysis (IPA).
Results/Discussion: Three superordinate themes were identified, positive introductions to nature (this group discussed how important having a good start in this environment was to engaging in this activity), positive association with nature (the participants viewed natural environments where they exercised in a positive way), and purpose and practicalities (participants spoke of viewing GE favourably when there was a purpose to it above and beyond doing it for its own sake) with 5 associated subordinate themes. Results suggest that autistic people appear to get considerable positive psychological outcomes from engaging within GE which relate directly to some of the features of AS e.g. disruptive concerns and that a functional purpose to the GE would be helpful in terms of encouraging uptake of and adherence to GE within an autistic group
- âŠ