42 research outputs found

    MITS: the Multi-Imaging Transient Spectrograph for SOXS

    Get PDF
    The Son Of X-Shooter (SOXS) is a medium resolution spectrograph R~4500 proposed for the ESO 3.6 m NTT. We present the optical design of the UV-VIS arm of SOXS which employs high efficiency ion-etched gratings used in first order (m=1) as the main dispersers. The spectral band is split into four channels which are directed to individual gratings, and imaged simultaneously by a single three-element catadioptric camera. The expected throughput of our design is >60% including contingency. The SOXS collaboration expects first light in early 2021. This paper is one of several papers presented in these proceedings describing the full SOXS instrument

    Optical design of the SOXS spectrograph for ESO NTT

    Full text link
    An overview of the optical design for the SOXS spectrograph is presented. SOXS (Son Of X-Shooter) is the new wideband, medium resolution (R>4500) spectrograph for the ESO 3.58m NTT telescope expected to start observations in 2021 at La Silla. The spectroscopic capabilities of SOXS are assured by two different arms. The UV-VIS (350-850 nm) arm is based on a novel concept that adopts the use of 4 ion-etched high efficiency transmission gratings. The NIR (800- 2000 nm) arm adopts the '4C' design (Collimator Correction of Camera Chromatism) successfully applied in X-Shooter. Other optical sub-systems are the imaging Acquisition Camera, the Calibration Unit and a pre-slit Common Path. We describe the optical design of the five sub-systems and report their performance in terms of spectral format, throughput and optical quality. This work is part of a series of contributions describing the SOXS design and properties as it is about to face the Final Design Review.Comment: 9 pages, 9 figures, published in SPIE Proceedings 1070

    The VIS detector system of SOXS

    Get PDF
    SOXS will be a unique spectroscopic facility for the ESO NTT telescope able to cover the optical and NIR bands thanks to two different arms: the UV-VIS (350-850 nm), and the NIR (800-1800 nm). In this article, we describe the design of the visible camera cryostat and the architecture of the acquisition system. The UV-VIS detector system is based on a e2v CCD 44-82, a custom detector head coupled with the ESO continuous ow cryostats (CFC) cooling system and the NGC CCD controller developed by ESO. This paper outlines the status of the system and describes the design of the different parts that made up the UV-VIS arm and is accompanied by a series of contributions describing the SOXS design solutions.Comment: 9 pages, 13 figures, to be published in SPIE Proceedings 1070

    The Acquisition Camera System for SOXS at NTT

    Full text link
    SOXS (Son of X-Shooter) will be the new medium resolution (R∌\sim4500 for a 1 arcsec slit), high-efficiency, wide band spectrograph for the ESO-NTT telescope on La Silla. It will be able to cover simultaneously optical and NIR bands (350-2000nm) using two different arms and a pre-slit Common Path feeding system. SOXS will provide an unique facility to follow up any kind of transient event with the best possible response time in addition to high efficiency and availability. Furthermore, a Calibration Unit and an Acquisition Camera System with all the necessary relay optics will be connected to the Common Path sub-system. The Acquisition Camera, working in optical regime, will be primarily focused on target acquisition and secondary guiding, but will also provide an imaging mode for scientific photometry. In this work we give an overview of the Acquisition Camera System for SOXS with all the different functionalities. The optical and mechanical design of the system are also presented together with the preliminary performances in terms of optical quality, throughput, magnitude limits and photometric properties.Comment: 9 pages, 7 figures, SPIE conferenc

    Heat treatment procedure of the Aluminium 6061-T651 for the Ariel Telescope mirrors

    Get PDF
    The Atmospheric Remote-Sensing Infrared Exoplanet Large Survey (Ariel) is the M4 mission adopted by ESA’s ”Cosmic Vision” program. Its launch is scheduled for 2029. The purpose of the mission is the study of exoplanetary atmospheres on a target of ∌ 1000 exoplanets. Ariel scientific payload consists of an off-axis, unobscured Cassegrain telescope. The light is directed towards a set of photometers and spectrometers with wavebands between 0.5 and 7.8 ”m and operating at cryogenic temperatures. The Ariel Space Telescope consists of a primary parabolic mirror with an elliptical aperture of 1.1· 0.7 m, followed by a hyperbolic secondary, a parabolic collimating tertiary and a flat-folding mirror directing the output beam parallel to the optical bench; all in bare aluminium. The choice of bare aluminium for the realization of the mirrors is dictated by several factors: maximizing the heat exchange, reducing the costs of materials and technological advancement. To date, an aluminium mirror the size of Ariel’s primary has never been made. The greatest challenge is finding a heat treatment procedure that stabilizes the aluminium, particularly the Al6061T651 Laminated alloy. This paper describes the study and testing of the heat treatment procedure developed on aluminium samples of different sizes (from 50mm to 150mm diameter), on 0.7m diameter mirror, and discusses future steps

    Determination of stellar parameters for Ariel targets: a comparison analysis between different spectroscopic methods

    Get PDF
    Ariel has been selected as the next ESA M4 science mission and it is expected to be launched in 2028. During its 4-year mission, Ariel will observe the atmospheres of a large and diversified population of transiting exoplanets. A key factor for the achievement of the scientific goal of Ariel is the selection strategy for the definition of the input target list. A meaningful choice of the targets requires an accurate knowledge of the planet hosting star properties and this is necessary to be obtained well before the launch. In this work, we present the results of a bench-marking analysis between three different spectroscopic techniques used to determine stellar parameters for a selected number of targets belonging to the Ariel reference sample. We aim to consolidate a method that will be used to homogeneously determine the stellar parameters of the complete Ariel reference sample. Homogeneous, accurate and precise derivation of stellar parameters is crucial for characterising exoplanet-host stars and in turn is a key factor for the accuracy of the planet properties

    SOXS Optical Design

    Get PDF
    The report describes the optical design of the Son Of X-Shooter (SOXS) intrument for the NTT ESO telescope, presented at the instrument Optical FD

    The instrument control unit of the ARIEL payload: design evolution following the unit and payload subsystems SRR (system requirements review)

    Get PDF
    ARIEL (Atmospheric Remote-sensing InfraRed Large-survey) is a medium-class mission of the European Space Agency, part of the Cosmic Vision program, whose launch is foreseen by early 2029. ARIEL aims to study the composition of exoplanet atmospheres, their formation and evolution. The ARIEL’s target will be a sample of about 1000 planets observed with one or more of the following methods: transit, eclipse and phase-curve spectroscopy, at both visible and infrared wavelengths simultaneously. The scientific payload is composed by a reflective telescope having a 1m-class elliptical primary mirror, built in solid Aluminium, and two focal-plane instruments: FGS and AIRS. FGS (Fine Guidance System)1 has the double purpose, as suggested by its name, of performing photometry (0.50-0.55 ”m) and low resolution spectrometry over three bands (from 0.8 to 1.95 ”m) and, simultaneously, to provide data to the spacecraft AOCS (Attitude and Orbit Control System) with a cadence of 10 Hz and contributing to reach a 0.02 arcsec pointing accuracy for bright targets. AIRS (ARIEL InfraRed Spectrometer) instrument will perform IR spectrometry in two wavelength ranges: between 1.95 and 3.9 ”m (with a spectral resolution R > 100) and between 3.9 and 7.8 ”m with a spectral resolution R > 30. This paper provides the status of the ICU (Instrument Control Unit), an electronic box whose purpose is to command and supply power to AIRS (as well as acquire science data from its two channels) and to command and control the TCU (Telescope Control Unit)

    The detector control unit of the fine guidance sensor instrument on-board the ARIEL mission: design status

    Get PDF
    ARIEL is an ESA mission whose scientific goal is to investigate exoplanetary atmospheres. The payload is composed by two instruments: AIRS (ARIEL IR Spectrometer) and FGS (Fine Guidance System). The FGS detection chain is composed by two HgCdTe detectors and by the cold Front End Electronics (SIDECAR), kept at cryogenic temperatures, interfacing with the F-DCU (FGS Detector Control Unit) boards that we will describe thoroughly in this paper. The F-DCU are situated in the warm side of the payload in a box called FCU (FGS Control Unit) and contribute to the FGS VIS/NIR imaging and NIR spectroscopy. The F-DCU performs several tasks: drives the detectors, processes science data and housekeeping telemetries, manages the commands exchange between the FGS/DPU (Data Processing Unit) and the SIDECARs and provides high quality voltages to the detectors. This paper reports the F-DCU status, describing its architecture, the operation and the activities, past and future necessary for its development
    corecore