100 research outputs found

    The Quark-Hadron Phase Transition, QCD Lattice Calculations and Inhomogeneous Big-Bang Nucleosynthesis

    Full text link
    We review recent lattice QCD results for the surface tension at the finite temperature quark-hadron phase transition and discuss their implications on the possible scale of inhomogeneities. In the quenched approximation the average distance between nucleating centers is smaller than the diffusion length of a protron, so that inhomogeneities are washed out by the time nucleosynthesis sets in. Consequently the baryon density fluctuations formed by a QCD phase transition in the early universe cannot significantly affect standard big-bang nucleosynthesis calculations and certainly cannot allow baryons to close the universe. At present lattice results are inconclusive when dynamical fermions are included.Comment: 8 pages, LaTe

    Deep inelastic scattering of baryons in a modified soft wall model

    Full text link
    We calculate the structure functions for unpolarized deep inelastic scattering of baryons using an AdS/QCD soft wall model that considers a dressed mass for the bulk fermionic fields. Considering the regime of large Bjorken parameter x, we compare the results for the proton structure function F2F_2 with experimental results.Comment: We improved the comparison with experimental data and included more references, version to appear in EPJ

    A critical look at 50 years particle theory from the perspective of the crossing property

    Full text link
    The crossing property is perhaps the most subtle aspect of the particle-field relation. Although it is not difficult to state its content in terms of certain analytic properties relating different matrixelements of the S-matrix or formfactors, its relation to the localization- and positive energy spectral principles requires a level of insight into the inner workings of QFT which goes beyond anything which can be found in typical textbooks on QFT. This paper presents a recent account based on new ideas derived from "modular localization" including a mathematic appendix on this subject. Its main novel achievement is the proof of the crossing property of formfactors from a two-algebra generalization of the KMS condition. The main content of this article is the presentation of the derailments of particle theory during more than 4 decades: the S-matrix bootstrap, the dual model and its string theoretic extension. Rather than being related to crossing, string theory is the (only known) realization of a dynamic infinite component one-particle wave function space and its associated infinite component field. Here "dynamic" means that, unlike a mere collection of infinitely many irreducible unitary Poincar\'e group representation or free fields, the formalism contains also operators which communicate between the different irreducible Poincar\'e represenations (the levels of the "infinite tower") and set the mass/spin spectrum. Wheras in pre-string times there were unsuccessful attempts to achieve this in analogy to the O(4,2) hydrogen spectrum by the use of higher noncompact groups, the superstring in d=9+1, which uses instead (bosonic/fermionic) oscillators obtained from multicomponent chiral currents is the only known unitary positive energy solution of the dynamical infinite component pointlike localized field project.Comment: 66 pages, addition of new results, addition of references, will appear in this form in Foundations of Physic

    Should science educators deal with the science/religion issue?

    Get PDF
    I begin by examining the natures of science and religion before looking at the ways in which they relate to one another. I then look at a number of case studies that centre on the relationships between science and religion, including attempts to find mechanisms for divine action in quantum theory and chaos theory, creationism, genetic engineering and the writings of Richard Dawkins. Finally, I consider some of the pedagogical issues that would need to be considered if the science/religion issue is to be addressed in the classroom. I conclude that there are increasing arguments in favour of science educators teaching about the science/religion issue. The principal reason for this is to help students better to learn science. However, such teaching makes greater demands on science educators than has generally been the case. Certain of these demands are identified and some specific suggestions are made as to how a science educator might deal with the science/religion issue. © 2008 Taylor & Francis
    • 

    corecore