235 research outputs found
Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems
Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests
Action scales for quantum decoherence and their relation to structures in phase space
A characteristic action is defined whose magnitude determines some
properties of the expectation value of a general quantum displacement operator.
These properties are related to the capability of a given environmental
`monitoring' system to induce decoherence in quantum systems coupled to it. We
show that the scale for effective decoherence is given by . We relate this characteristic action with a complementary
quantity, , and analyse their connection with the main features of
the pattern of structures developed by the environmental state in different
phase space representations. The relevance of the -action scale is
illustrated using both a model quantum system solved numerically and a set of
model quantum systems for which analytical expressions for the time-averaged
expectation value of the displacement operator are obtained explicitly.Comment: 12 pages, 3 figure
Optimal atomic detection by control of detuning and spatial dependence of laser intensity
Atomic detection by fluorescence may fail because of reflection from the
laser or transmission without excitation. The detection probability for a given
velocity range may be improved by controlling the detuning and the spatial
dependence of the laser intensity. A simple optimization method is discussed
and exemplified
Resonance expansions in quantum mechanics
The goal of this contribution is to discuss various resonance expansions that
have been proposed in the literature.Comment: 10 pages and 1 figure; presented at the Istanbul workshop on
pseudo-Hermitian Hamiltonian
Immune Responses Elicited in Tertiary Lymphoid Tissues Display Distinctive Features
During chronic inflammation, immune effectors progressively organize themselves into a functional tertiary lymphoid tissue (TLT) within the targeted organ. TLT has been observed in a wide range of chronic inflammatory conditions but its pathophysiological significance remains unknown. We used the rat aortic interposition model in which a TLT has been evidenced in the adventitia of chronically rejected allografts one month after transplantation. The immune responses elicited in adventitial TLT and those taking place in spleen and draining lymph nodes (LN) were compared in terms of antibody production, T cell activation and repertoire perturbations. The anti-MHC humoral response was more intense and more diverse in TLT. This difference was associated with an increased percentage of activated CD4+ T cells and a symmetric reduction of regulatory T cell subsets. Moreover, TCR repertoire perturbations in TLT were not only increased and different from the common pattern observed in spleen and LN but also âstochastic,â since each recipient displayed a specific pattern. We propose that the abnormal activation of CD4+ T cells promotes the development of an exaggerated pathogenic immune humoral response in TLT. Preliminary findings suggest that this phenomenon i) is due to a defective immune regulation in this non-professional inflammatory-induced lymphoid tissue, and ii) also occurs in human chronically rejected grafts
Recommended from our members
âUpload Your Impactâ: Can Digital Enclaves Enable Participation in Racialized Markets?
Copyright © The Author(s) 2022. Ethno-racial minorities are often racialized and consequently excluded from various consumption contexts. Racialized market actors strive to overcome exclusion and gain participation in markets; however, these efforts are often insufficient because they cannot create equitable access to market resources, fair opportunities for voice, and empowerment to shape market practices. Our research identifies digital enclave movements as a unique means by which racialized market actors redirect their resources and mobilize digital network tools to participate in markets. Using a qualitative study of the digital enclave #MyBlackReceipt, we explore tactics supporting the formation and sustenance of digital enclaves and how they support participation in markets. We identify five tactics that racialized market actors employ to foster digital enclaves and enhance market participation: legitimizing, delimitating, vitalizing, manifesting, and bridging. Last, we provide recommendations for policymakers on how to support and foster more equitable participation of ethnic minority groups in markets while addressing the risks of radicalization and the backlash related to enclaves
Conditional probabilities in quantum theory, and the tunneling time controversy
It is argued that there is a sensible way to define conditional probabilities
in quantum mechanics, assuming only Bayes's theorem and standard quantum
theory. These probabilities are equivalent to the ``weak measurement''
predictions due to Aharonov {\it et al.}, and hence describe the outcomes of
real measurements made on subensembles. In particular, this approach is used to
address the question of the history of a particle which has tunnelled across a
barrier. A {\it gedankenexperiment} is presented to demonstrate the physically
testable implications of the results of these calculations, along with graphs
of the time-evolution of the conditional probability distribution for a
tunneling particle and for one undergoing allowed transmission. Numerical
results are also presented for the effects of loss in a bandgap medium on
transmission and on reflection, as a function of the position of the lossy
region; such loss should provide a feasible, though indirect, test of the
present conclusions. It is argued that the effects of loss on the pulse {\it
delay time} are related to the imaginary value of the momentum of a tunneling
particle, and it is suggested that this might help explain a small discrepancy
in an earlier experiment.Comment: 11 pages, latex, 4 postscript figures separate (one w/ 3 parts
Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads
The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits
- âŠ