1,125 research outputs found
Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data
Many systems are partially stochastic in nature. We have derived data driven
approaches for extracting stochastic state machines (Markov models) directly
from observed data. This chapter provides an overview of our approach with
numerous practical applications. We have used this approach for inferring
shipping patterns, exploiting computer system side-channel information, and
detecting botnet activities. For contrast, we include a related data-driven
statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems
and Securit
Flavon exchange effects in models with abelian flavor symmetry
In models with abelian flavor symmetry the small mixing angles and mass
ratios of quarks and leptons are typically given by powers of small parameters
characterizing the spontaneous breaking of flavor symmetry by "flavon" fields.
If the scale of the breaking of flavor symmetry is near the weak scale, flavon
exchange can lead to interesting flavor-violating and CP violating effects.
These are studied. It is found that d_e, mu -> e + gamma, and mu-e conversion
on nuclei can be near present limits. For significant range of parameters mu-e
conversion can be the most sensitive way to look for such effects.Comment: 19 pages, 5 Postscript figures, LATE
Nearly Bi-Maximal Neutrino Mixing, Muon g-2 Anomaly and Lepton-Flavor-Violating Processes
We interpret the newly observed muon g-2 anomaly in the framework of a
leptonic Higgs doublet model with nearly degenerate neutrino masses and nearly
bi-maximal neutrino mixing. Useful constraints are obtained on the rates of
lepton-flavor-violating rare decays ,
and as well as the - conversion ratio .
We find that , and
depend crucially on possible non-zero but samll values of the
neutrino mixing matrix element , and they are also sensitive to the
Dirac-type CP-violating phase. In particular, we show that , and are approximately in the ratio if is much larger than , and in the
ratio if is much lower than , where and are the corresponding mass-squared
differences of atmospheric and solar neutrino oscillations.Comment: LaTex 6 pages (2 PS figures). Phys. Rev. D (in printing
Report on CE-19: 16-O(p,n)16-F(0-) in the IUCF Cooler
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
TeV-scale seesaw from a multi-Higgs model
We suggest new simple model of generating tiny neutrino masses through a
TeV-scale seesaw mechanism without requiring tiny Yukawa couplings. This model
is a simple extension of the standard model by introducing extra one Higgs
singlet, and one Higgs doublet with a tiny vacuum expectation value.
Experimental constraints, electroweak precision data and no large flavor
changing neutral currents, are satisfied since the extra doublet only has a
Yukawa interaction with lepton doublets and right-handed neutrinos, and their
masses are heavy of order a TeV-scale. Since active light neutrinos are
Majorana particles, this model predicts a neutrinoless double beta decay.Comment: 21 pages, 8 figure
Lepton flavor violating signals of a little Higgs model at the high energy linear colliders
Littlest Higgs model predicts the existence of the doubly charged
scalars , which generally have large flavor changing couplings
to leptons. We calculate the contributions of to the lepton
flavor violating processes and , and compare our numerical results with the current
experimental upper limits on these processes. We find that some of these
processes can give severe constraints on the coupling constant and the
mass parameter . Taking into account the constraints on these free
parameters, we further discuss the possible lepton flavor violating signals of
at the high energy linear collider
experiments. Our numerical results show that the possible signals of
might be detected via the subprocesses in the future experiments.Comment: 16 pages, 7 figures. Discussions and references added, typos
correcte
Lepton Flavor Violation in the SUSY-GUT Models with Lopsided Mass Matrix
The tiny neutrino masses measured in the neutrino oscillation experiments can
be naturally explained by the supersymmetric see-saw mechanism. If the
supersymmetry breaking is mediated by gravity, the see-saw models may predict
observable lepton flavor violating effects. In this work, we investigate the
lepton flavor violating process in the kind of neutrino mass
models based on the idea of the ``lopsided'' form of the charged lepton mass
matrix. The constraints set by the muon anomalous magnetic moment are taken
into account. We find the present models generally predict a much larger
branching ratio of than the experimental limit. Conversely,
this process may give strong constraint on the lepton flavor structure.
Following this constraint we then find a new kind of the charged lepton mass
matrix. The feature of the structure is that both the elements between the 2-3
and 1-3 generations are ``lopsided''. This structure produces a very small 1-3
mixing and a large 1-2 mixing in the charged lepton sector, which naturally
leads to small and the LMA solution for the solar neutrino
problem.Comment: 24 pages, 8 figure
Magnetic field-dependent interplay between incoherent and Fermi liquid transport mechanisms in low-dimensional tau phase organic conductors
We present an electrical transport study of the 2-dimensional (2D) organic
conductor tau-(P-(S,S)-DMEDT-TTF)_2(AuBr)_2(AuBr_2)_y (y = 0.75) at low
temperatures and high magnetic fields. The inter-plane resistivity rho_zz
increases with decreasing temperature, with the exception of a slight anomaly
at 12 K. Under a magnetic field B, both rho_zz and the in-plane resistivity
plane rho_xx show a pronounced negative and hysteretic magnetoresistance with
Shubnikov de Haas (SdH)oscillations being observed in some (high
quality)samples above 15 T. Contrary to the predicted single, star-shaped,
closed orbit Fermi surface from band structure calculations (with an expected
approximate area of 12.5% of A_FBZ), two fundamental frequencies F_l and F_h
are detected in the SdH signal. These orbits correspond to 2.4% and 6.8% of the
area of the first Brillouin zone(A_FBZ), with effective masses F_l = 4.0 +/-
0.5 and F_h = 7.3 +/- 0.1. The angular dependence, in tilted magnetic fields of
F_l and F_h, reveals the 2D character of the FS and Angular dependent
magnetoresistance (AMRO) further suggests a FS which is strictly 2-D where the
inter-plane hopping t_c is virtually absent or incoherent. The Hall constant
R_xy is field independent, and the Hall mobility increases by a factor of 3
under moderate magnetic fields. Our observations suggest a unique physical
situation where a stable 2D Fermi liquid state in the molecular layers are
incoherently coupled along the least conducting direction. The magnetic field
not only reduces the inelastic scattering between the 2D metallic layers, but
it also reveals the incoherent nature of interplane transport in the AMRO
spectrum. The apparent ferromagnetism of the hysteretic magnetoresistance
remains an unsolved problem.Comment: 33 pages, 11 figure
Semiconductive and Photoconductive Properties of the Single Molecule Magnets Mn-Acetate and FeBr
Resistivity measurements are reported for single crystals of
Mn-Acetate and FeBr. Both materials exhibit a
semiconductor-like, thermally activated behavior over the 200-300 K range. The
activation energy, , obtained for Mn-Acetate was 0.37 0.05
eV, which is to be contrasted with the value of 0.55 eV deduced from the
earlier reported absorption edge measurements and the range of 0.3-1 eV from
intramolecular density of states calculations, assuming = , the
optical band gap. For FeBr, was measured as 0.73 0.1 eV,
and is discussed in light of the available approximate band structure
calculations. Some plausible pathways are indicated based on the crystal
structures of both lattices. For Mn-Acetate, we also measured
photoconductivity in the visible range; the conductivity increased by a factor
of about eight on increasing the photon energy from 632.8 nm (red) to 488 nm
(blue). X-ray irradiation increased the resistivity, but was insensitive
to exposure.Comment: 7 pages, 8 figure
- …