23 research outputs found

    Organelle reorganization in bovine oocytes during dominant follicle growth and regressionOrganelle reorganization in bovine oocytes during dominant follicle growth and regression

    Get PDF
    BACKGROUND: We tested the hypothesis that organelles in bovine oocytes undergo changes in number and spatial distribution in a manner specific for phase of follicle development. METHODS: Cumulus-oocyte-complexes were collected from Hereford heifers by ultrasound-guided follicle aspiration from dominant follicles in the growing phase (n = 5; Day 0 = ovulation), static phase (n = 5), regressing phase (n = 7) of Wave 1 and from preovulatory follicles (n = 5). Oocytes were processed and transmission electron micrographs of ooplasm representing peripheral, perinuclear and central regions were evaluated using standard stereological methods. RESULTS: The number of mitochondria and volume occupied by lipid droplets was higher (P < 0.03) in oocytes from regressing follicles (193.0 ± 10.4/1000 μm(3) and 3.5 ± 0.7 %) than growing and preovulatory stages (118.7 ± 14.4/1000 μm(3) and 1.1 ± 0.3 %; 150.5 ± 28.7/1000 μm(3) and 1.6 ± 0.2 %, respectively). Oocytes from growing, static and preovulatory follicles had >70 % mitochondria in the peripheral regions whereas oocytes from regressing follicles had an even distribution. Oocytes from growing follicles had more lipid droplets in peripheral region than in central region (86.9 vs. 13.1 %). Percent surface area of mitochondria in contact with lipid droplets increased from growing (2.3 %) to static, regressing or preovulatory follicle stage (8.9, 6.1 and 6.2 %). The amount, size and distribution of other organelles did not differ among phases (P > 0.11). CONCLUSIONS: Our hypothesis was supported in that mitochondrial number increased and translocation occurred from a peripheral to an even distribution as follicles entered the regressing phase. In addition, lipid droplets underwent spatial reorganization from a peripheral to an even distribution during the growing phase and mitochondria-lipid contact area increased with follicle maturation

    Vascular risk factors in glaucoma: the results of a national survey

    Get PDF
    Background The role of vascular risk factors in glaucoma is still being debated. To assess the importance of vascular risk factors in patients with primary open-angle glaucoma (POAG), data from the medical history of 2,879 POAG patients and 973 age-matched controls were collected and analyzed. Methods Design: observational survey. Setting: 35 Italian academic centers. Study population: POAG patients and age-matched controls. In order to reduce bias consecutive patients were included. Observation procedures: data concerning vascular risk factors were collected for all patients with a detailed questionnaire. A complete ophthalmological examination with assessment of intraocular pressure (IOP), visual field, optic disc, and systemic blood pressure was performed. Main outcome measures: the ESH-ESC (European Society of Hypertension-European Society of Cardiology) guidelines were used to calculate the level of cardiovascular risk. Crude and adjusted estimates of the odds ratios (OR) were calculated for all cardiovascular risk factors in POAG and controls. Results The study included 2,879 POAG patients and 973 controls. POAG cases had a significantly higher systolic and diastolic blood pressure (p=0.001) and systolic perfusion pressure (p=0.02) as compared with controls. Also mean IOP was significantly higher in the POAG group (p=0.01), while diastolic perfusion pressure was not significantly different in the two groups. Myopia was more prevalent in the POAG group (23 vs 18%, p=0.005) as well as a positive family history for glaucoma (26 vs 12%, p= 0.004). POAG patients tended to have a higher cardiovascular risk than controls: 63% of glaucoma cases vs 55% of controls (OR: 1.38, p=0.005) had a “high” or “very high” cardiovascular risk. Conclusions The level of cardiovascular risk was significantly higher in glaucoma patients than in controls
    corecore