7,850 research outputs found

    The distribution of forces affects vibrational properties in hard sphere glasses

    Full text link
    We study theoretically and numerically the elastic properties of hard sphere glasses, and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero-temperature, we argue that the presence of certain pairs of particles interacting with a small force ff soften elastic properties. This softening affects the exponents characterizing elasticity at high pressure, leading to experimentally testable predictions. Denoting P(f)∼fθeP(f)\sim f^{\theta_e} the force distribution of such pairs and ϕc\phi_c the packing fraction at which pressure diverges, we predict that (i) the density of states has a low-frequency peak at a scale ω∗\omega^*, rising up to it as D(ω)∼ω2+aD(\omega) \sim \omega^{2+a}, and decaying above ω∗\omega^* as D(ω)∼ω−aD(\omega)\sim \omega^{-a} where a=(1−θe)/(3+θe)a=(1-\theta_e)/(3+\theta_e) and ω\omega is the frequency, (ii) shear modulus and mean-squared displacement are inversely proportional with ⟨δR2⟩∼1/μ∼(ϕc−ϕ)κ\langle \delta R^2\rangle\sim1/\mu\sim (\phi_c-\phi)^{\kappa} where κ=2−2/(3+θe)\kappa=2-2/(3+\theta_e), and (iii) continuum elasticity breaks down on a scale ℓc∼1/δz∼(ϕc−ϕ)−b\ell_c \sim1/\sqrt{\delta z}\sim (\phi_c-\phi)^{-b} where b=(1+θe)/(6+2θe)b=(1+\theta_e)/(6+2\theta_e) and δz=z−2d\delta z=z-2d, where zz is the coordination and dd the spatial dimension. We numerically test (i) and provide data supporting that θe≈0.41\theta_e\approx 0.41 in our bi-disperse system, independently of system preparation in two and three dimensions, leading to κ≈1.41\kappa\approx1.41, a≈0.17a \approx 0.17, and b≈0.21b\approx 0.21. Our results for the mean-square displacement are consistent with a recent exact replica computation for d=∞d=\infty, whereas some observations differ, as rationalized by the present approach.Comment: 5 pages + 4 pages supplementary informatio

    On the dependence of the avalanche angle on the granular layer thickness

    Full text link
    A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure
    • …
    corecore