43 research outputs found

    The collision of two slowly rotating, initially non boosted, black holes in the close limit

    Get PDF
    We study the collision of two slowly rotating, initially non boosted, black holes in the close limit. A ``punctures'' modification of the Bowen - York method is used to construct conformally flat initial data appropriate to the problem. We keep only the lowest nontrivial orders capable of giving rise to radiation of both gravitational energy and angular momentum. We show that even with these simplifications an extension to higher orders of the linear Regge-Wheeler-Zerilli black hole perturbation theory, is required to deal with the evolution equations of the leading contributing multipoles. This extension is derived, together with appropriate extensions of the Regge-Wheeler and Zerilli equations. The data is numerically evolved using these equations, to obtain the asymptotic gravitational wave forms and amplitudes. Expressions for the radiated gravitational energy and angular momentum are derived and used together with the results of the numerical evolution to provide quantitative expressions for the relative contribution of different terms, and their significance is analyzed.Comment: revtex, 18 pages, 2 figures. Misprints corrected. To be published in Phys. Rev.

    Initial data for a head on collision of two Kerr-like black holes with close limit

    Get PDF
    We prove the existence of a family of initial data for the Einstein vacuum equation which can be interpreted as the data for two Kerr-like black holes in arbitrary location and with spin in arbitrary direction. This family of initial data has the following properties: (i) When the mass parameter of one of them is zero or when the distance between them goes to infinity, it reduces exactly to the Kerr initial data. (ii) When the distance between them is zero, we obtain exactly a Kerr initial data with mass and angular momentum equal to the sum of the mass and angular momentum parameters of each of them. The initial data depends smoothly on the distance, the mass and the angular momentum parameters.Comment: 15 pages, no figures, Latex2

    The imposition of Cauchy data to the Teukolsky equation I: The nonrotating case

    Full text link
    Gravitational perturbations about a Kerr black hole in the Newman-Penrose formalism are concisely described by the Teukolsky equation. New numerical methods for studying the evolution of such perturbations require not only the construction of appropriate initial data to describe the collision of two orbiting black holes, but also to know how such new data must be imposed into the Teukolsky equation. In this paper we show how Cauchy data can be incorporated explicitly into the Teukolsky equation for non-rotating black holes. The Teukolsky function % \Psi and its first time derivative ∂tι\partial_t \Psi can be written in terms of only the 3-geometry and the extrinsic curvature in a gauge invariant way. Taking a Laplace transform of the Teukolsky equation incorporates initial data as a source term. We show that for astrophysical data the straightforward Green function method leads to divergent integrals that can be regularized like for the case of a source generated by a particle coming from infinity.Comment: 9 pages, REVTEX. Misprints corrected in formulas (2.4)-(2.7). Final version to appear in PR

    On Physical Equivalence between Nonlinear Gravity Theories

    Full text link
    We argue that in a nonlinear gravity theory, which according to well-known results is dynamically equivalent to a self-gravitating scalar field in General Relativity, the true physical variables are exactly those which describe the equivalent general-relativistic model (these variables are known as Einstein frame). Whenever such variables cannot be defined, there are strong indications that the original theory is unphysical. We explicitly show how to map, in the presence of matter, the Jordan frame to the Einstein one and backwards. We study energetics for asymptotically flat solutions. This is based on the second-order dynamics obtained, without changing the metric, by the use of a Helmholtz Lagrangian. We prove for a large class of these Lagrangians that the ADM energy is positive for solutions close to flat space. The proof of this Positive Energy Theorem relies on the existence of the Einstein frame, since in the (Helmholtz--)Jordan frame the Dominant Energy Condition does not hold and the field variables are unrelated to the total energy of the system.Comment: 37 pp., TO-JLL-P 3/93 Dec 199
    corecore