1,579 research outputs found

    The isolation of gravitational instantons: Flat tori V flat R^4

    Full text link
    The role of topology in the perturbative solution of the Euclidean Einstein equations about flat instantons is examined.Comment: 15 pages, ICN-UNAM 94-1

    Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes: Matching between Hawking temperature and Unruh temperature

    Full text link
    We study the matching between the Hawking temperature of a large class of static D-dimensional black holes and the Unruh temperature of the corresponding higher dimensional Rindler spacetime. In order to accomplish this task we find the global embedding of the D-dimensional black holes into a higher dimensional Minkowskian spacetime, called the global embedding Minkowskian spacetime procedure (GEMS procedure). These global embedding transformations are important on their own, since they provide a powerful tool that simplifies the study of black hole physics by working instead, but equivalently, in an accelerated Rindler frame in a flat background geometry. We discuss neutral and charged Tangherlini black holes with and without cosmological constant, and in the negative cosmological constant case, we consider the three allowed topologies for the horizons (spherical, cylindrical/toroidal and hyperbolic).Comment: 7 pages; ReVTeX

    Dynamics of the Electro-Optic response of Blue Bronze

    Full text link
    We have studied the charge density wave (CDW) repolarization dynamics in blue bronze by applying square-wave voltages of different frequencies to the sample and measuring the changes in infrared transmittance, proportional to CDW strain. The frequency dependence of the electro-transmittance was fit to a modified harmonic oscillator response and the evolution of the parameters as functions of voltage, position, and temperature are discussed. Resonant frequencies decrease with distance from the current contacts, indicating that the resulting delays are intrinsic to the CDW with the strain effectively flowing from the contact. For a fixed position, the average relaxation time has a voltage dependence given by tau_0~V^-p, with 1<p<2. The temperature dependence of the fitting parameters shows that the dynamics are governed by both the force on the CDW and the CDW current: for a given force and position, both the relaxation and delay times are inversely proportional to the CDW current as temperature is varied. The long relaxation and delay times (~ 1 ms) suggest that the strain response involves the motion of macroscopic objects, presumably CDW phase dislocation lines.Comment: 36 pages, including 12 figures, submitted to Phys. Rev.

    Double-slit interference pattern from single-slit screen and its gravitational analogues

    Full text link
    The double slit experiment (DSE) is known as an important cornerstone in the foundations of physical theories such as Quantum Mechanics and Special Relativity. A large number of different variants of it were designed and performed over the years. We perform and discuss here a new verion with the somewhat unexpected results of obtaining interference pattern from single-slit screen. This outcome, which shows that the routes of the photons through the array were changed, leads one to discuss it, using the equivalence principle, in terms of geodesics mechanics. We show using either the Brill's version of the canonical formulation of general relativity or the linearized version of it that one may find corresponding and analogous situations in the framework of general relativity.Comment: 51 pages, 12 Figures five of them contain two subfigures and thus the number of figures is 17, 1 Table. Some minor changes introduced, especially, in the reference

    Particle Production and Positive Energy Theorems for Charged Black Holes in deSitter

    Full text link
    We study quantum mechanical and classical stability properties of Reissner-Nordstrom deSitter spacetimes, which describe black holes with mass MM and charge QQ in a background with cosmological constant Λ0\Lambda \ge 0. There are two sources of particle production in these spacetimes; the black hole horizon and the cosmological horizon. A scattering calculation is done to compute the Hawking radiation in these spacetimes. We find that the flux from the black hole horizon equals the flux from the cosmological horizon, if and only if Q=M|Q|=M, indicating that this is a state of thermodynamic equilibrium. The spectrum, however, is not thermal. We also show that spacetimes containing a number of charge equal to mass black holes with Λ0\Lambda \ge 0, have supercovariantly constant spinors, suggesting that they may be minimum energy states in a positive energy construction. As a first step in this direction, we present a positive energy construction for asymptotically deSitter spacetimes with vanishing charge. Because the construction depends only on a spatial slice, our result also holds for spacetimes which are asymptotically Robertson-Walker.Comment: 11 pages (1 figure not included), UMHEP-39

    Vector Theory of Gravity

    Full text link
    We proposed a gravitation theory based on an analogy with electrodynamics on the basis of a vector field. For the first time, to calculate the basic gravitational effects in the framework of a vector theory of gravity, we use a Lagrangian written with gravitational radiation neglected and generalized to the case of ultra-relativistic speeds. This allows us to accurately calculate the values of all three major gravity experiments: the values of the perihelion shift of Mercury, the light deflection angle in the gravity field of the Sun and the value of radar echo delay. The calculated values coincide with the observed ones. It is shown that, in this theory, there exists a model of an expanding Universe.Comment: 9 page

    The AdS/CFT Correspondence and a New Positive Energy Conjecture for General Relativity

    Get PDF
    We examine the AdS/CFT correspondence when the gauge theory is considered on a compactified space with supersymmetry breaking boundary conditions. We find that the corresponding supergravity solution has a negative energy, in agreement with the expected negative Casimir energy in the field theory. Stability of the gauge theory would imply that this supergravity solution has minimum energy among all solutions with the same boundary conditions. Hence we are lead to conjecture a new positive energy theorem for asymptotically locally Anti-de Sitter spacetimes. We show that the candidate minimum energy solution is stable against all quadratic fluctuations of the metric.Comment: 25 pages, harvma

    Einstein gravity as a 3D conformally invariant theory

    Get PDF
    We give an alternative description of the physical content of general relativity that does not require a Lorentz invariant spacetime. Instead, we find that gravity admits a dual description in terms of a theory where local size is irrelevant. The dual theory is invariant under foliation preserving 3-diffeomorphisms and 3D conformal transformations that preserve the 3-volume (for the spatially compact case). Locally, this symmetry is identical to that of Horava-Lifshitz gravity in the high energy limit but our theory is equivalent to Einstein gravity. Specifically, we find that the solutions of general relativity, in a gauge where the spatial hypersurfaces have constant mean extrinsic curvature, can be mapped to solutions of a particular gauge fixing of the dual theory. Moreover, this duality is not accidental. We provide a general geometric picture for our procedure that allows us to trade foliation invariance for conformal invariance. The dual theory provides a new proposal for the theory space of quantum gravity.Comment: 27 pages. Published version (minor changes and corrections
    corecore