204 research outputs found
Einstein's "Zur Elektrodynamik..." (1905) Revisited, with Some Consequences
Einstein, in his "Zur Elektrodynamik bewegter Korper", gave a physical
(operational) meaning to "time" of a remote event in describing "motion" by
introducing the concept of "synchronous stationary clocks located at different
places". But with regard to "place" in describing motion, he assumed without
analysis the concept of a system of co-ordinates. In the present paper, we
propose a way of giving physical (operational) meaning to the concepts of
"place" and "co-ordinate system", and show how the observer can define both the
place and time of a remote event. Following Einstein, we consider another
system "in uniform motion of translation relatively to the former". Without
assuming "the properties of homogeneity which we attribute to space and time",
we show that the definitions of space and time in the two systems are linearly
related. We deduce some novel consequences of our approach regarding
faster-than-light observers and particles, "one-way" and "two-way" velocities
of light, symmetry, the "group property" of inertial reference frames, length
contraction and time dilatation, and the "twin paradox". Finally, we point out
a flaw in Einstein's argument in the "Electrodynamical Part" of his paper and
show that the Lorentz force formula and Einstein's formula for transformation
of field quantities are mutually consistent. We show that for faster-than-light
bodies, a simple modification of Planck's formula for mass suffices. (Except
for the reference to Planck's formula, we restrict ourselves to Physics of
1905.)Comment: 55 pages, 4 figures, accepted for publication in "Foundations of
Physics
Two Mathematically Equivalent Versions of Maxwell's Equations
This paper is a review of the canonical proper-time approach to relativistic
mechanics and classical electrodynamics. The purpose is to provide a physically
complete classical background for a new approach to relativistic quantum
theory. Here, we first show that there are two versions of Maxwell's equations.
The new version fixes the clock of the field source for all inertial observers.
However now, the (natural definition of the effective) speed of light is no
longer an invariant for all observers, but depends on the motion of the source.
This approach allows us to account for radiation reaction without the
Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any
assumptions about the structure of the source. The theory provides a new
invariance group which, in general, is a nonlinear and nonlocal representation
of the Lorentz group. This approach also provides a natural (and unique)
definition of simultaneity for all observers. The corresponding particle theory
is independent of particle number, noninvariant under time reversal (arrow of
time), compatible with quantum mechanics and has a corresponding positive
definite canonical Hamiltonian associated with the clock of the source.
We also provide a brief review of our work on the foundational aspects of the
corresponding relativistic quantum theory. Here, we show that the standard
square-root and the Dirac equations are actually two distinct
spin- particle equations.Comment: Appeared: Foundations of Physic
Why Operationism Doesn't Go Away: Extrascientific Incentives of Social-Psychological Research
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69038/2/10.1177_004839318601600302.pd
Defining and Presenting Data
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/67457/2/10.1177_108056998004300203.pd
- …