11 research outputs found

    Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system

    Get PDF
    The bacterial human pathogen Helicobacter pylori produces a type IV secretion system ( cag T4SS) to inject the oncoprotein CagA into gastric cells. The cag T4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagI N ) prolonged by globular C-terminal domains (CagI C ). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagI C with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagI C were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagI C plays a key role in cag T4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cag T4SS, a crucial risk factor for gastric cancer development.Bases structurale du système de secretion de type IV d'Helicobacter pyloriBases structurales et moléculaires de l'exploitation de l'integrin a5ß1 par le système de sécrétion de type IV d'Helicobacter pylor

    Epigenetic regulation of tissue factor inducibility in endothelial cell senescence

    Full text link
    Cellular senescence, a programmed state induced by multiple deleterious triggers, is characterised by permanent cell-cycle exit and altered gene expression and cell morphology. In humans it is considered a tumor suppressor mechanism, mediating removal of damaged or mutated cells from the cell-cycle pool, and may also contribute to the ageing process. In this study, we show that senescent human umbilical vein endothelial cells lose their ability to induce tissue factor (TF), a transmembrane protein with important roles in hemostasis and cancer progression, in response to thrombin or - independently of cell-surface receptors - phorbol-12-myristate-13-acetate. This phenomenon could not be explained by senescence-related alterations in the downstream signal transduction cascade or by accelerated TF mRNA degradation. Rather, using chromatin immuno-precipitation we could show that loss of TF gene inducibility during senescence occurs following chromatin remodelling of the TF promoter resulting from hypo-acetylation of histone H3. These findings were reversible after transduction of presenescent cultures with telomerase reverse transcriptase, enabling late-passage cultures to escape senescence. These results extend the involvement of heterochromatic gene silencing in senescence beyond cell cycle-related genes and suggest a novel anti-cancer mechanism of senescence through inhibition of TF inducibility

    Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system

    Get PDF
    The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development

    Extracellular vesicle species differentially affect endothelial cell functions and differentially respond to exercise training in patients with chronic coronary syndromes

    Full text link
    BACKGROUND Extracellular vesicles are released upon cellular activation and mediate inter-cellular communication. Individual species of extracellular vesicles might have divergent roles in vascular homeostasis and may show different responses to therapies such as exercise training. AIMS We examine endothelial effects of medium-size and small extracellular vesicles from the same individual with or without chronic coronary syndrome, and in chronic coronary syndrome patients participating in a four-week high-intensity interval training intervention. METHODS Human aortic endothelial cells were exposed to medium-size extracellular vesicles and small extracellular vesicles isolated from plasma samples of study participants. Endothelial cell survival, activation and re-endothelialisation capacity were assessed by respective staining protocols. Extracellular vesicles were quantified by nanoparticle tracking analysis and flow cytometry. Extracellular vesicle microRNA expression was quantified by realtime-quantitative polymerase chain reaction. RESULTS In patients with chronic coronary syndrome (n = 25), plasma counts of leukocyte-derived medium-size extracellular vesicles were higher than in age-matched healthy controls (n = 25; p = 0.04) and were reduced by high-intensity interval training (n = 15; p = 0.01 vs baseline). Re-endothelialisation capacity was promoted by medium-size extracellular vesicles from controls, but not by medium-size extracellular vesicles from chronic coronary syndrome patients. High-intensity interval training for 4 weeks enhanced medium-size extracellular vesicle-mediated support of in vitro re-endothelialisation. Small extracellular vesicles from controls or chronic coronary syndrome patients increased endothelial cell death and reduced repair functions and were not affected by high-intensity interval training. CONCLUSION The present study demonstrates that medium-size extracellular vesicles and small extracellular vesicles differentially affect endothelial cell survival and repair responses. This equilibrium is unbalanced in patients with chronic coronary syndrome where leukocyte-derived medium-size extracellular vesicles are increased leading to a loss of medium-size extracellular vesicle-mediated endothelial repair. High-intensity interval training partially restored medium-size extracellular vesicle-mediated endothelial repair, underlining its use in cardiovascular prevention and therapy to improve endothelial function

    Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system.

    No full text
    The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development

    AP-1 (Activated Protein-1) Transcription Factor JunD Regulates Ischemia/Reperfusion Brain Damage via IL-1β (Interleukin-1β)

    Full text link
    Background and Purpose- Inflammation is a major pathogenic component of ischemia/reperfusion brain injury, and as such, interventions aimed at inhibiting inflammatory mediators promise to be effective strategies in stroke therapy. JunD-a member of the AP-1 (activated protein-1) family of transcription factors-was recently shown to regulate inflammation by targeting IL (interleukin)-1β synthesis and macrophage activation. The purpose of the present study was to assess the role of JunD in ischemia/reperfusion-induced brain injury. Methods- WT (wild type) mice randomly treated with either JunD or scramble (control) siRNA were subjected to 45 minutes of transient middle cerebral artery occlusion followed by 24 hours of reperfusion. Stroke size, neurological deficit, plasma/brain cytokines, and oxidative stress determined by 4-hydroxynonenal immunofluorescence staining were evaluated 24 hours after reperfusion. Additionally, the role of IL-1β was investigated by treating JunD siRNA mice with an anti-IL-1β monoclonal antibody on reperfusion. Finally, JunD expression was assessed in peripheral blood monocytes isolated from patients with acute ischemic stroke. Results- In vivo JunD knockdown resulted in increased stroke size, reduced neurological function, and increased systemic inflammation, as confirmed by higher neutrophil count and lymphopenia. Brain tissue IL-1β levels were augmented in JunD siRNA mice as compared with scramble siRNA, whereas no difference was detected in IL-6, TNF-α (tumor necrosis factor-α), and 4-hydroxynonenal levels. The deleterious effects of silencing of JunD were rescued by treating mice with an anti-IL-1β antibody. In addition, JunD expression was decreased in peripheral blood monocytes of patients with acute ischemic stroke at 6 and 24 hours after onset of stroke symptoms compared with sex- and age-matched healthy controls. Conclusions- JunD blunts ischemia/reperfusion-induced brain injury via suppression of IL-1β

    Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury

    Full text link
    BACKGROUND: In acute ischemic stroke (AIS) patients, impaired blood-brain barrier (BBB) integrity is associated with hemorrhagic transformation and worsened outcome. Yet, the mechanisms underlying these relationships are poorly understood and consequently therapeutic strategies are lacking. This study sought to determine whether SIRT5 contributes to BBB damage following I/R brain injury. METHODS AND RESULTS: SIRT5 knockout (SIRT5-/-) and wild type (WT) mice underwent transient middle cerebral artery (MCA) occlusion (tMCAO) followed by 48h of reperfusion. Genetic deletion of SIRT5 decreased infarct size, improved neurological function and blunted systemic inflammation following stroke. Similar effects were also achieved by in vivo SIRT5 silencing. Immunohistochemical analysis revealed decreased BBB leakage and degradation of the tight junction protein occludin in SIRT5-/- mice exposed to tMCAO as compared to WT. In primary human brain microvascular endothelial cells (HBMVECs) exposed to hypoxia/reoxygenation (H/R), SIRT5 silencing decreased endothelial permeability and upregulated occludin and claudin-5; this effect was prevented by the PI3K inhibitor wortmannin. Lastly, SIRT5 gene expression was increased in peripheral blood monocytes (PBMCs) of AIS patients at 6h after onset of stroke compared to sex- and age-matched healthy controls. CONCLUSION: SIRT5 is upregulated in PBMCs of AIS patients and in the MCA of WT mice exposed to tMCAO; SIRT5 mediates I/R-induced brain damage by increasing BBB permeability through degradation of occludin. This effect was reproduced in HBMVECs exposed to H/R, mediated by the PI3K/Akt pathway. Our findings shed new light on the mechanisms of I/R-dependent brain damage and suggest SIRT5 as a novel therapeutic target
    corecore