647 research outputs found
Foss & Connelly\u27s Stages Going to the Geysers.
The stereograph features a black and white image of a line of three stage coaches traveling down a path surrounded by rough terrane. The image is mounted on a yellow card with rounded edges.https://scholarsjunction.msstate.edu/fvw-photographs/1407/thumbnail.jp
Foss & Connelly\u27s Stages Going to the Geysers.
The stereograph features a black and white image of a line of three stage coaches traveling down a path surrounded by rough terrane. The image is mounted on a yellow card with rounded edges.https://scholarsjunction.msstate.edu/fvw-artifacts/1721/thumbnail.jp
SimpleCAR: An Efficient Bug-Finding Tool Based on Approximate Reachability
We present a new safety hardware model checker SimpleCAR that serves as a reference implementation for evaluating Complementary Approximate Reachability (CAR), a new SAT-based model checking framework inspired by classical reachability analysis. The tool gives a “bottom-line” performance measure for comparing future extensions to the framework. We demonstrate the performance of SimpleCAR on challenging benchmarks from the Hardware Model Checking Competition. Our experiments indicate that SimpleCAR is particularly suited for unsafety checking, or bug-finding; it is able to solve 7 unsafe instances within 1 h that are not solvable by any other state-of-the-art techniques, including BMC and IC3/PDR, within 8 h. We also identify a bug (reports safe instead of unsafe) and 48 counterexample generation errors in the tools compared in our analysis
Intersection and Rotation of Assumption Literals Boosts Bug-Finding
SAT-based techniques comprise the state-of-the-art in functional verification of safety-critical hardware and software, including IC3/PDR-based model checking and Bounded Model Checking (BMC). BMC is the incontrovertible best method for unsafety checking, aka bug-finding. Complementary Approximate Reachability (CAR) and IC3/PDR complement BMC for bug-finding by detecting different sets of bugs. To boost the efficiency of formal verification, we introduce heuristics involving intersection and rotation of the assumption literals used in the SAT encodings of these techniques. The heuristics generate smaller unsat cores and diverse satisfying assignments that help in faster convergence of these techniques, and have negligible runtime overhead. We detail these heuristics, incorporate them in CAR, and perform an extensive experimental evaluation of their performance, showing a 25% boost in bug-finding efficiency of CAR.We contribute a detailed analysis of the effectiveness of these heuristics: their influence on SAT-based bug-finding enables detection of different bugs from BMCbased checking. We find the new heuristics are applicable to IC3/PDR-based algorithms as well, and contribute a modified clause generalization procedure
Artificial Intelligence
Contains research objectives and reports on five research projects.Computation Center, M.I.T
Novel Bypass Attack and BDD-based Tradeoff Analysis Against all Known Logic Locking Attacks
Logic locking has emerged as a promising technique for protecting gate-level semiconductor intellectual property. However, recent work has shown that such gate-level locking techniques are vulnerable to Boolean satisfiability (SAT) attacks. In order to thwart such attacks, several SAT-resistant logic locking techniques have been proposed, which minimize the discriminating ability of input patterns to rule out incorrect keys. In this work, we show that such SAT-resistant logic locking techniques have their own set of unique vulnerabilities. In particular, we propose a novel ``bypass attack that ensures the locked circuit works even when an incorrect key is applied. Such a technique makes it possible for an adversary to be oblivious to the type of SAT-resistant protection applied on the circuit, and still be able to restore the circuit to its correct functionality. We show that such a bypass attack is feasible on a wide range of benchmarks and SAT-resistant techniques, while incurring minimal run-time and area/delay overhead. Binary decision diagrams (BDDs) are utilized to analyze the proposed bypass attack and assess tradeoffs in security vs overhead of various countermeasures
Software Model Checking with Explicit Scheduler and Symbolic Threads
In many practical application domains, the software is organized into a set
of threads, whose activation is exclusive and controlled by a cooperative
scheduling policy: threads execute, without any interruption, until they either
terminate or yield the control explicitly to the scheduler. The formal
verification of such software poses significant challenges. On the one side,
each thread may have infinite state space, and might call for abstraction. On
the other side, the scheduling policy is often important for correctness, and
an approach based on abstracting the scheduler may result in loss of precision
and false positives. Unfortunately, the translation of the problem into a
purely sequential software model checking problem turns out to be highly
inefficient for the available technologies. We propose a software model
checking technique that exploits the intrinsic structure of these programs.
Each thread is translated into a separate sequential program and explored
symbolically with lazy abstraction, while the overall verification is
orchestrated by the direct execution of the scheduler. The approach is
optimized by filtering the exploration of the scheduler with the integration of
partial-order reduction. The technique, called ESST (Explicit Scheduler,
Symbolic Threads) has been implemented and experimentally evaluated on a
significant set of benchmarks. The results demonstrate that ESST technique is
way more effective than software model checking applied to the sequentialized
programs, and that partial-order reduction can lead to further performance
improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical
methods in computer scienc
Bostonia: The Boston University Alumni Magazine. Volume 9
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
- …