451 research outputs found
Recommended from our members
IHS Roundtable: “The Eyes of Texas" Historians Perspectives on the Origins of the Song
Histor
Scaling laws and vortex profiles in 2D decaying turbulence
We use high resolution numerical simulations over several hundred of turnover
times to study the influence of small scale dissipation onto vortex statistics
in 2D decaying turbulence. A self-similar scaling regime is detected when the
scaling laws are expressed in units of mean vorticity and integral scale, as
predicted by Carnevale et al., and it is observed that viscous effects spoil
this scaling regime. This scaling regime shows some trends toward that of the
Kirchhoff model, for which a recent theory predicts a decay exponent .
In terms of scaled variables, the vortices have a similar profile close to a
Fermi-Dirac distribution.Comment: 4 Latex pages and 4 figures. Submitted to Phys. Rev. Let
Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: a randomised controlled trial
AIM/HYPOTHESIS: To assess whether low-dose glucocorticoid treatment induces adverse metabolic effects, as is evident for high glucocorticoid doses. METHODS: In a randomised placebo-controlled double-blind (participants and the investigators who performed the studies and assessed the outcomes were blinded) dose-response intervention study, 32 healthy men (age 22 +/- 3 years; BMI 22.4 +/- 1.7 kg/m(2)) were allocated to prednisolone 7.5 mg once daily (n = 12), prednisolone 30 mg once daily (n = 12), or placebo (n = 8) for 2 weeks using block randomisation. Main outcome measures were glucose, lipid and protein metabolism, measured by stable isotopes, before and at 2 weeks of treatment, in the fasted state and during a two-step hyperinsulinaemic clamp conducted in the Clinical Research Unit of the Academic Medical Centre, Amsterdam, the Netherlands RESULTS: Prednisolone, compared with placebo, dose dependently and significantly increased fasting plasma glucose levels, whereas only prednisolone 30 mg increased fasting insulin levels (29 +/- 15 pmol/l). Prednisolone 7.5 mg and prednisolone 30 mg decreased the ability of insulin to suppress endogenous glucose production (by 17 +/- 6% and 46 +/- 7%, respectively, vs placebo). Peripheral glucose uptake was not reduced by prednisolone 7.5 mg, but was decreased by prednisolone 30 mg by 34 +/- 6% (p < 0.0001). Compared with placebo, prednisolone treatment tended to decrease lipolysis in the fasted state (p = 0.062), but both prednisolone 7.5 mg and prednisolone 30 mg decreased insulin-mediated suppression of lipolysis by 11 +/- 5% and 34 +/- 6%, respectively. Finally, prednisolone treatment increased whole-body proteolysis during hyperinsulinaemia, which tended to be driven by prednisolone 30 mg (5 +/- 2%; p = 0.06). No side effects were reported by the study participants. All participants completed the study and were analysed. CONCLUSIONS/INTERPRETATION: Not only at high doses but also at low doses, glucocorticoid therapy impaired intermediary metabolism by interfering with the metabolic actions of insulin on liver and adipose tissue. These data indicate that even low-dose glucocorticoids may impair glucose tolerance when administered chronically. TRIAL REGISTRATION: ISRCTN83991850
Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field
We have performed numerical simulations on a pure electron plasma system
under a strong magnetic field, in order to examine quasi-stationary states that
the system eventually evolves into. We use ring states as the initial states,
changing the width, and find that the system evolves into a vortex crystal
state from a thinner-ring state while a state with a single-peaked density
distribution is obtained from a thicker-ring initial state. For those
quasi-stationary states, density distribution and macroscopic observables are
defined on the basis of a coarse-grained density field. We compare our results
with experiments and some statistical theories, which include the
Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and
the minimum enstrophy state. From some of those initial states, we obtain the
quasi-stationary states which are close to the minimum enstrophy state, but we
also find that the quasi-stationary states depend upon initial states, even if
the initial states have the same energy and angular momentum, which means the
ergodicity does not hold.Comment: 9 pages, 7 figure
Slow relaxation in the two dimensional electron plasma under the strong magnetic field
We study slow relaxation processes in the point vortex model for the
two-dimensional pure electron plasma under the strong magnetic field. By
numerical simulations, it is shown that, from an initial state, the system
undergoes the fast relaxation to a quasi-stationary state, and then goes
through the slow relaxation to reach a final state. From analysis of simulation
data, we find (i) the time scale of the slow relaxation increases linearly to
the number of electrons if it is measured by the unit of the bulk rotation
time, (ii) during the slow relaxation process, each electron undergoes an
superdiffusive motion, and (iii) the superdiffusive motion can be regarded as
the Levy flight, whose step size distribution is of the power law. The time
scale that each electron diffuses over the system size turns out to be much
shorter than that of the slow relaxation, which suggests that the correlation
among the superdiffusive trajectories is important in the slow relaxation
process.Comment: 11pages, 19 figures. Submitted to J. Phys. Soc. Jp
Statistical mechanics of Fofonoff flows in an oceanic basin
We study the minimization of potential enstrophy at fixed circulation and
energy in an oceanic basin with arbitrary topography. For illustration, we
consider a rectangular basin and a linear topography h=by which represents
either a real bottom topography or the beta-effect appropriate to oceanic
situations. Our minimum enstrophy principle is motivated by different arguments
of statistical mechanics reviewed in the article. It leads to steady states of
the quasigeostrophic (QG) equations characterized by a linear relationship
between potential vorticity q and stream function psi. For low values of the
energy, we recover Fofonoff flows [J. Mar. Res. 13, 254 (1954)] that display a
strong westward jet. For large values of the energy, we obtain geometry induced
phase transitions between monopoles and dipoles similar to those found by
Chavanis and Sommeria [J. Fluid Mech. 314, 267 (1996)] in the absence of
topography. In the presence of topography, we recover and confirm the results
obtained by Venaille and Bouchet [Phys. Rev. Lett. 102, 104501 (2009)] using a
different formalism. In addition, we introduce relaxation equations towards
minimum potential enstrophy states and perform numerical simulations to
illustrate the phase transitions in a rectangular oceanic basin with linear
topography (or beta-effect).Comment: 26 pages, 28 figure
Extending diagnostic practices in gyrate atrophy:Enzymatic characterization and the development of an in vitro pyridoxine responsiveness assay
Gyrate atrophy of the choroid and retina (GACR) is caused by pathogenic biallelic variants in the gene encoding ornithine-δ-aminotransferase (OAT), and is characterized by progressive vision loss leading to blindness. OAT is a pyridoxal-5′-phosphate (PLP) dependent enzyme that is mainly involved in ornithine catabolism, and patients with a deficiency develop profound hyperornithinemia. Therapy is aimed at lowering ornithine levels through dietary arginine restriction and, in some cases, through enhancement of OAT activity via supraphysiological dosages of pyridoxine. In this study, we aimed to extend diagnostic practices in GACR by extensively characterizing the consequences of pathogenic variants on the enzymatic function of OAT, both at the level of the enzyme itself as well as the flux through the ornithine degradative pathway. In addition, we developed an in vitro pyridoxine responsiveness assay. We identified 14 different pathogenic variants, of which one variant was present in all patients of Dutch ancestry (p.(Gly353Asp)). In most patients the enzymatic activity of OAT as well as the rate of [14C]-ornithine flux was below the limit of quantification (LOQ). Apart from our positive control, only one patient cell line showed responsiveness to pyridoxine in vitro, which is in line with the reported in vivo pyridoxine responsiveness in this patient. None of the patients harboring the p.(Gly353Asp) substitution were responsive to pyridoxine in vivo or in vitro. In silico analysis and small-scale expression experiments showed that this variant causes a folding defect, leading to increased aggregation properties that could not be rescued by PLP. Using these results, we developed a diagnostic pipeline for new patients suspected of having GACR. Adding OAT enzymatic analyses and in vitro pyridoxine responsiveness to diagnostic practices will not only increase knowledge on the consequences of pathogenic variants in OAT, but will also enable expectation management for therapeutic modalities, thus eventually improving clinical care.</p
New Mechanics of Traumatic Brain Injury
The prediction and prevention of traumatic brain injury is a very important
aspect of preventive medical science. This paper proposes a new coupled
loading-rate hypothesis for the traumatic brain injury (TBI), which states that
the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an
impulsive loading that strikes the head in several coupled degrees-of-freedom
simultaneously. To show this, based on the previously defined covariant force
law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions
within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt
dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid
discontinuous deformations: translational dislocations and rotational
disclinations. Brain's dislocations and disclinations, caused by the
SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum
brain model.
Keywords: Traumatic brain injuries, coupled loading-rate hypothesis,
Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and
disclinationsComment: 18 pages, 1 figure, Late
Challenges of Misbehavior Detection in Industrial Wireless Networks
In recent years, wireless technologies are increasingly adopted in many application domains that were either unconnected before or exclusively used cable networks. This paradigm shift towards - often ad-hoc - wireless communication has led to significant benefits in terms of flexibility and mobility. Alongside with these benefits, however, arise new attack vectors, which cannot be mitigated by traditional security measures.
Hence, mechanisms that are orthogonal to cryptographic security techniques are necessary in order to detect adversaries. In traditional networks, such mechanisms are subsumed under the term "intrusion detection system" and many proposals have been implemented for different application domains. More recently, the term "misbehavior detection" has been coined to encompass detection mechanisms especially for attacks in wireless networks.
In this paper, we use industrial wireless networks as an exemplary application domain to discuss new directions and future challenges in detecting insider attacks. To that end, we review existing work on intrusion detection in mobile ad-hoc networks. We focus on physical-layer-based detection mechanisms as these are a particularly interesting research direction that had not been reasonable before widespread use of wireless technology.Peer Reviewe
- …