3 research outputs found

    Dynamics and determinants of SARS-CoV-2 RT-PCR testing on symptomatic individuals attending healthcare centers during 2020 in Bahia, Brazil

    Get PDF
    RT-PCR testing data provides opportunities to explore regional and individual determinants of test positivity and surveillance infrastructure. Using Generalized Additive Models, we explored 222,515 tests of a random sample of individuals with COVID-19 compatible symptoms in the Brazilian state of Bahia during 2020. We found that age and male gender were the most significant determinants of test positivity. There was evidence of an unequal impact among socio-demographic strata, with higher positivity among those living in areas with low education levels during the first epidemic wave, followed by those living in areas with higher education levels in the second wave. Our estimated probability of testing positive after symptom onset corroborates previous reports that the probability decreases with time, more than halving by about two weeks and converging to zero by three weeks. Test positivity rates generally followed state-level reported cases, and while a single laboratory performed ~90% of tests covering ~99% of the state's area, test turn-around time generally remained below four days. This testing effort is a testimony to the Bahian surveillance capacity during public health emergencies, as previously witnessed during the recent Zika and Yellow Fever outbreaks

    The Schenberg spherical gravitational wave detector: the first commissioning runs

    No full text
    Here we present a status report of the first spherical antenna project equipped with a set of parametric transducers for gravitational detection. The Mario Schenberg, as it is called, started its commissioning phase at the Physics Institute of the University of Sao Paulo, in September 2006, under the full support of FAPESP. We have been testing the three preliminary parametric transducer systems in order to prepare the detector for the next cryogenic run, when it will be calibrated. We are also developing sapphire oscillators that will replace the current ones thereby providing better performance. We also plan to install eight transducers in the near future, six of which are of the two-mode type and arranged according to the truncated icosahedron configuration. The other two, which will be placed close to the sphere equator, will be mechanically non-resonant. In doing so, we want to verify that if the Schenberg antenna can become a wideband gravitational wave detector through the use of an ultra-high sensitivity non-resonant transducer constructed using the recent achievements of nanotechnology
    corecore