23 research outputs found
Recommended from our members
Acarology in crimino-legal investigations: the human acarofauna during life and death
Naturally occurring culturable aerobic gut flora of adult Phlebotomus papatasi, vector of Leishmania major in the Old World
Cutaneous leishmaniasis is a neglected, vector-borne parasitic disease and is responsible for persistent, often disfiguring lesions and other associated complications. Leishmania, causing zoonotic cutaneous leishmaniasis (ZCL) in the Old World are mainly transmitted by the predominant sand fly vector, Phlebotomus papatasi. To date, there is no efficient control measure or vaccine available for this widespread insect-borne infectious disease.A survey was carried out to study the abundance of different natural gut flora in P. papatasi, with the long-term goal of generating a paratransgenic sand fly that can potentially block the development of Leishmania in the sand fly gut, thereby preventing transmission of leishmania in endemic disease foci. Sand flies, in particular, P. papatasi were captured from different habitats of various parts of the world. Gut microbes were cultured and identified using 16S ribosomal DNA analysis and a phylogenetic tree was constructed. We found variation in the species and abundance of gut flora in flies collected from different habitats. However, a few Gram-positive, nonpathogenic bacteria including Bacillus flexus and B. pumilus were common in most of the sites examined.Our results indicate that there is a wide range of variation of aerobic gut flora inhabiting sand fly guts, which possibly reflect the ecological condition of the habitat where the fly breeds. Also, some species of bacteria (B. pumilus, and B. flexus) were found from most of the habitats. Important from an applied perspective of dissemination, our results support a link between oviposition induction and adult gut flora
Recommended from our members
Evolutionary relationships of "candidatus riesia spp.," endosymbiotic enterobacteriaceae living within hematophagous primate lice
The primary endosymbiotic bacteria from three species of parasitic primate lice were characterized molecularly. We have confirmed the characterization of the primary endosymbiont (P-endosymbiont) of the human head/body louse Pediculus humanus and provide new characterizations of the P-endosymbionts from Pediculus schaeffi from chimpanzees and Pthirus pubis, the pubic louse of humans. The endosymbionts show an average percent sequence divergence of 11 to 15% from the most closely related known bacterium "Candidatus Arsenophonus insecticola." We propose that two additional species be added to the genus "Candidatus Riesia." The new species proposed within "Candidatus Riesia" have sequence divergences of 3.4% and 10 to 12% based on uncorrected pairwise differences. Our Bayesian analysis shows that the branching pattern for the primary endosymbionts was the same as that for their louse hosts, suggesting a long coevolutionary history between primate lice and their primary endosymbionts. We used a calibration of 5.6 million years to date the divergence between endosymbionts from human and chimpanzee lice and estimated an evolutionary rate of nucleotide substitution of 0.67% per million years, which is 15 to 30 times faster than previous estimates calculated for Buchnera, the primary endosymbiont in aphids. Given the evidence for cospeciation with primate lice and the evidence for fast evolutionary rates, this lineage of endosymbiotic bacteria can be evaluated as a fast-evolving marker of both louse and primate evolutionary histories
DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae)
In DNA barcoding, a short standardized DNA sequence is used to assign unknown individuals to species and aid in the discovery of new species. A fragment of the mitochondrial gene cytochrome c oxidase subunit 1 is emerging as the standard barcode region for animals. However, patterns of mitochondrial variability can be confounded by the spread of maternally transmitted bacteria that cosegregate with mitochondria. Here, we investigated the performance of barcoding in a sample comprising 12 species of the blow fly genus Protocalliphora, known to be infected with the endosymbiotic bacteria Wolbachia. We found that the barcoding approach showed very limited success: assignment of unknown individuals to species is impossible for 60% of the species, while using the technique to identify new species would underestimate the species number in the genus by 75%. This very low success of the barcoding approach is due to the non-monophyly of many of the species at the mitochondrial level. We even observed individuals from four different species with identical barcodes, which is, to our knowledge, the most extensive case of mtDNA haplotype sharing yet described. The pattern of Wolbachia infection strongly suggests that the lack of within-species monophyly results from introgressive hybridization associated with Wolbachia infection. Given that Wolbachia is known to infect between 15 and 75% of insect species, we conclude that identification at the species level based on mitochondrial sequence might not be possible for many insects. However, given that Wolbachia-associated mtDNA introgression is probably limited to very closely related species, identification at the genus level should remain possible