9 research outputs found

    The tundra-taiga interface and its dynamics: Concepts and applications

    No full text
    The tundra-taiga interface is a dominant vegetation boundary that is related to climate and has an importance at a global level for its contribution to land atmosphere interactions, biodiversity and land use. However, our understanding of the precise location, dynamics and characteristics of the boundary, and its environmental and biotic drivers at a circumpolar level is poor. Our understanding has been constrained for various reasons, perhaps including a quest by researchers to denote 2- or even 3-dimensional tree distribution limits to a single line on a map. Current rapid sociological and environmental changes in the north necessitate better definitions to be made of characteristics associated with the tundra-taiga interface so that changes can be monitored and identified, and implications of these changes can be assessed. This concept paper introduces some of the complexities of adequately defining the boundary and suggests characteristics and processes that could focus future research at a collaborative, circumpolar level to create baseline data and to monitor and predict changes in the boundary zone.</p

    The dynamics of the tundra-taiga boundary: An overview and suggested coordinated and integrated approach to research

    No full text
    The tundra-taiga boundary stretches for more than 13 400 km around the Northern Hemisphere and is probably the Earth's greatest vegetation transition. The trees that define the boundary have been sensitive to climate changes in the past and models of future vegetation distribution suggest a rapid and dramatic invasion of the tundra by the taiga. Such changes would generate both positive and negative feedbacks to the climate system and the balance could result in a net warming effect. However, the, boundary is becoming increasingly affected by human activities that remove trees and degrade forest-tundra into tundra-like areas. Because of the vastness and remoteness of the tundra-taiga boundary, and of methodological problems such as problematic definitions and lack of standardized methods to record the location and characteristics of the ecotone, a project group has been established under the auspices of the International Arctic Science Committee (IASC). This paper summarizes the initial output of the group and focuses on our uncertainties in understanding the current processes at the tundra-taiga boundary and the conflicts between model predictions of changes in the location of the boundary and contrasting recently observed changes due to human activities. Finally, we present recommendations for a coordinated international approach to the problem and invite the international community to join us in reducing the uncertainties about the dynamics of the ecotone and their consequences.</p

    Is impaired dopaminergic function associated with mobility capacity in older adults?

    No full text

    Molecular targets for antiepileptic drug development

    No full text
    corecore