12 research outputs found
Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te) chalcopyrite-structure compounds
The electronic structure, linear and nonlinear optical properties have been
calculated for CuInX2 (X=S, Se, Te) chalcopyrite-structure single crystals
using the state-of-the-art full potential linear augmented plane wave (FP-LAPW)
method. We present results for band structure, density of states, and imaginary
part of the frequency-dependent linear and nonlinear optical susceptibilities.
We find that these crystals are semiconductors with direct band gaps. We have
calculated the birefringence of these crystals. The birefringence is negative
for CuInS2 and CuInSe2 while it is positive for CuInTe2 in agreement with the
experimental data. Calculations are reported for the frequency-dependent
complex second-order non-linear optical susceptibilities . The intra-band and
inter-band contributions to the second harmonic generation increase when we
replace S by Se and decrease when we replace Se by Te. We find that smaller
energy band gap compounds have larger values of in agreement with the
experimental data and previous theoretical calculations.Comment: 17 pages, 6 figure