9 research outputs found

    Computational and experimental study of aerosol dispersion in a ventilated room

    Get PDF
    For many respiratory diseases, a primary mode of transmission is inhalation via aerosols and droplets. The COVID-19 pandemic has accelerated studies of aerosol dispersion in indoor environments. Most studies of aerosol dispersion present computational fluid dynamics results, which rarely include detailed experimental verification, and many of the computations are complex, making them hard to scale to larger spaces. This study presents a comparison of computational simulations and measurements of aerosol dispersion within a typical ventilated classroom. Measurements were accomplished using a custom-built low-cost sensor network composed of 15 commercially available optical particle sizers, which provided size-resolved information about the number concentrations and temporal dynamics of 0.3–40 µm diameter particles. Measurement results are compared to the computed dispersal and loss rates from a steady-state Reynolds-Averaged Navier–Stokes k-epsilon model. The results show that a newly developed aerosol-transport-model can accurately simulate the dispersion of aerosols and faithfully predict measured aerosol concentrations at different locations and times. The computational model was developed with scalability in mind such that it may be adapted for larger spaces. The experiments highlight that the fraction of aerosol recycled in the ventilation system depends on the aerosol droplet size and cannot be predicted by the recycled-to-outside air ratio. Moreover, aerosol recirculation is not negligible, as some computational approaches assume. Both modeling and measurements show that, depending on the location within the room, the maximum aerosol concentration can be many times higher than the average concentration, increasing the risk of infection

    Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing

    Get PDF
    Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume. We provide a robust assessment of the absolute particle number and mass exhalation rates from measurements of minute ventilation using a non-invasive Vyntus Hans Rudolf mask kit with straps housing a rotating vane spirometer along with measurements of the exhaled particle number concentrations and size distributions. Specifically, we report comparisons of the number and mass exhalation rates for children (12–14 years old) and adults (19–72 years old) when breathing, speaking and singing, which indicate that child and adult cohorts generate similar amounts of aerosol when performing the same activity. Mass exhalation rates are typically 0.002–0.02 ng s−1 from breathing, 0.07–0.2 ng s−1 from speaking (at 70–80 dBA) and 0.1–0.7 ng s−1 from singing (at 70–80 dBA). The aerosol exhalation rate increases with increasing sound volume for both children and adults when both speaking and singing

    Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing

    No full text
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has resulted in an unprecedented shutdown in social and economic activity, with the cultural sector particularly severely affected. Restrictions on musical performances have arisen from a perception that there is a significantly higher risk of aerosol production from singing than speaking, based upon high-profile examples of clusters of COVID-19 following choral rehearsals. However, comparing aerosol generation from different types of vocalization, including singing, across a range of volumes is a rapidly evolving area of research. Here, we measured aerosols from singing, speaking and breathing from a large cohort of 25 professional singers in a range of musical genres in a zero-background environment, allowing unequivocal attribution of aerosol production to specific vocalizations. We do not assess the relative volumes at which people speak and sing. However, both showed steep increases in mass concentration with increase in loudness (spanning a factor of 20–30 across the dynamic range measured, p < 0.001). At the quietest volume (50 to 60 dBA), neither singing (p = 0.19) nor speaking (p = 0.20) were significantly different to breathing. At the loudest volume (90 to 100 dBA), a statistically significant difference (p < 0.001) was observed between singing and speaking, but with singing only generating a factor of between 1.5 and 3.4 more aerosol mass. Guidelines for musical performances should be based on the loudness and duration of the vocalization, the number of participants and the environment in which the activity occurs, rather than the type of vocalization. Mitigations such as the use of amplification and increased attention to ventilation should be employed where practicable
    corecore