4 research outputs found

    Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000-17

    No full text
    Background: Universal access to safe drinking water and sanitation facilities is an essential human right, recognised in the Sustainable Development Goals as crucial for preventing disease and improving human wellbeing. Comprehensive, high-resolution estimates are important to inform progress towards achieving this goal. We aimed to produce high-resolution geospatial estimates of access to drinking water and sanitation facilities. Methods: We used a Bayesian geostatistical model and data from 600 sources across more than 88 low-income and middle-income countries (LMICs) to estimate access to drinking water and sanitation facilities on continuous continent-wide surfaces from 2000 to 2017, and aggregated results to policy-relevant administrative units. We estimated mutually exclusive and collectively exhaustive subcategories of facilities for drinking water (piped water on or off premises, other improved facilities, unimproved, and surface water) and sanitation facilities (septic or sewer sanitation, other improved, unimproved, and open defecation) with use of ordinal regression. We also estimated the number of diarrhoeal deaths in children younger than 5 years attributed to unsafe facilities and estimated deaths that were averted by increased access to safe facilities in 2017, and analysed geographical inequality in access within LMICs. Findings: Across LMICs, access to both piped water and improved water overall increased between 2000 and 2017, with progress varying spatially. For piped water, the safest water facility type, access increased from 40·0% (95% uncertainty interval [UI] 39·4–40·7) to 50·3% (50·0–50·5), but was lowest in sub-Saharan Africa, where access to piped water was mostly concentrated in urban centres. Access to both sewer or septic sanitation and improved sanitation overall also increased across all LMICs during the study period. For sewer or septic sanitation, access was 46·3% (95% UI 46·1–46·5) in 2017, compared with 28·7% (28·5–29·0) in 2000. Although some units improved access to the safest drinking water or sanitation facilities since 2000, a large absolute number of people continued to not have access in several units with high access to such facilities (>80%) in 2017. More than 253 000 people did not have access to sewer or septic sanitation facilities in the city of Harare, Zimbabwe, despite 88·6% (95% UI 87·2–89·7) access overall. Many units were able to transition from the least safe facilities in 2000 to safe facilities by 2017; for units in which populations primarily practised open defecation in 2000, 686 (95% UI 664–711) of the 1830 (1797–1863) units transitioned to the use of improved sanitation. Geographical disparities in access to improved water across units decreased in 76·1% (95% UI 71·6–80·7) of countries from 2000 to 2017, and in 53·9% (50·6–59·6) of countries for access to improved sanitation, but remained evident subnationally in most countries in 2017. Interpretation: Our estimates, combined with geospatial trends in diarrhoeal burden, identify where efforts to increase access to safe drinking water and sanitation facilities are most needed. By highlighting areas with successful approaches or in need of targeted interventions, our estimates can enable precision public health to effectively progress towards universal access to safe water and sanitation. Funding: Bill & Melinda Gates Foundation

    The burden and trend of diseases and their risk factors in Australia, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019

    No full text
    Background: A comprehensive understanding of temporal trends in the disease burden in Australia is lacking, and these trends are required to inform health service planning and improve population health. We explored the burden and trends of diseases and their risk factors in Australia from 1990 to 2019 through a comprehensive analysis of the Global Burden of Disease Study (GBD) 2019. Methods: In this systematic analysis for GBD 2019, we estimated all-cause mortality using the standardised GBD methodology. Data sources included primarily vital registration systems with additional data from sample registrations, censuses, surveys, surveillance, registries, and verbal autopsies. A composite measure of health loss caused by fatal and non-fatal disease burden (disability-adjusted life-years [DALYs]) was calculated as the sum of years of life lost (YLLs) and years of life lived with disability (YLDs). Comparisons between Australia and 14 other high-income countries were made. Findings: Life expectancy at birth in Australia improved from 77·0 years (95% uncertainty interval [UI] 76·9–77·1) in 1990 to 82·9 years (82·7–83·1) in 2019. Between 1990 and 2019, the age-standardised death rate decreased from 637·7 deaths (95% UI 634·1–641·3) to 389·2 deaths (381·4–397·6) per 100 000 population. In 2019, non-communicable diseases remained the major cause of mortality in Australia, accounting for 90·9% (95% UI 90·4–91·9) of total deaths, followed by injuries (5·7%, 5·3–6·1) and communicable, maternal, neonatal, and nutritional diseases (3·3%, 2·9–3·7). Ischaemic heart disease, self-harm, tracheal, bronchus, and lung cancer, stroke, and colorectal cancer were the leading causes of YLLs. The leading causes of YLDs were low back pain, depressive disorders, other musculoskeletal diseases, falls, and anxiety disorders. The leading risk factors for DALYs were high BMI, smoking, high blood pressure, high fasting plasma glucose, and drug use. Between 1990 and 2019, all-cause DALYs decreased by 24·6% (95% UI 21·5–28·1). Relative to similar countries, Australia's ranking improved for age-standardised death rates and life expectancy at birth but not for YLDs and YLLs between 1990 and 2019. Interpretation: An important challenge for Australia is to address the health needs of people with non-communicable diseases. The health systems must be prepared to address the increasing demands of non-communicable diseases and ageing. Funding: Bill & Melinda Gates Foundation

    Global injury morbidity and mortality from 1990 to 2017: Results from the global burden of disease study 2017

    No full text
    Background Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. methods We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). Findings In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). Interpretation Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care

    Estimating global injuries morbidity and mortality: Methods and data used in the Global Burden of Disease 2017 study

    No full text
    Background: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. Methods: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. Results: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. Conclusions: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future
    corecore