7,216 research outputs found

    Identification of Transnational Threats

    Get PDF
    In the past, the starting point for threat identification was the nation state. Today, national boundaries have lost much of their significance and global forces lacking identifiable national frontiers represent a real threat to US security. New technologies have facilitated the development of advanced terrorist methodologies and tactics. A new and increasingly significant threat is hostile forces which operate within the borders of states which are friendly to the United States. American universities are increasingly vulnerable to new transnational threats by virtue of the opportunities they present for acquisition of dual use technological skills. With its new cellular structure, terrorism has been privatized, is more difficult to counter, and enjoys great access to funds, weapons, and training. The broad anti-war coalition has created threats to the US critical infrastructure in connection with “direct action” against the Iraqi war. In one year alone, computer criminals funneled over 2.6 billion dollars out of Russia through Cyprus. Traffic in false documents constitutes an especially significant threat to our critical infrastructure and has become more serious with technological advances that have eased the production of such documents. The rise of identity theft, an important variation of traffic in false documents, threatens to undermine an important infrastructure base

    Characterizing upward lightning with and without a terrestrial gamma-ray flash

    Full text link
    We compare two observations of gamma-rays before, during, and after lightning flashes initiated by upward leaders from a tower during low-altitude winter thunderstorms on the western coast of Honshu, Japan. While the two leaders appear similar, one produced a terrestrial gamma-ray flash (TGF) so bright that it paralyzed the gamma-ray detectors while it was occurring, and could be observed only via the weaker flux of neutrons created in its wake, while the other produced no detectable TGF gamma-rays at all. The ratio between the indirectly derived gamma-ray fluence for the TGF and the 95% confidence gamma-ray upper limit for the gamma-ray quiet flash is a factor of 1Ă—1071\times10^7. With the only two observations of this type providing such dramatically different results -- a TGF probably as bright as those seen from space and a powerful upper limit -- we recognize that weak, sub-luminous TGFs in this situation are probably not common, and we quantify this conclusion. While the gamma-ray quiet flash appeared to have a faster leader and more powerful initial continuous current pulse than the flash that produced a TGF, the TGF-producing flash occurred during a weak gamma-ray "glow", while the gamma-ray quiet flash did not, implying a higher electric field aloft when the TGF was produced. We suggest that the field in the high-field region approached by a leader may be more important for whether a TGF is produced than the characteristics of the leader itself.Comment: 21 pages, 6 figures, accepted for publication by the Journal of Geophysical Research - Atmosphere

    Far-UV Emission from Elliptical Galaxies at z=0.55

    Get PDF
    The restframe UV-to-optical flux ratio, characterizing the ``UV upturn'' phenomenon, is potentially the most sensitive tracer of age in elliptical galaxies; models predict that it may change by orders of magnitude over the course of a few Gyr. In order to trace the evolution of the UV upturn as a function of redshift, we have used the far-UV camera on the Space Telescope Imaging Spectrograph to image the galaxy cluster CL0016+16 at z=0.55. Our 25''x25'' field includes four bright elliptical galaxies, spectroscopically confirmed to be passively evolving cluster members. The weak UV emission from the galaxies in our image demonstrates that the UV upturn is weaker at a lookback time 5.6 Gyr earlier than our own, as compared to measurements of the UV upturn in cluster E and S0 galaxies at z=0 and z=0.375. These images are the first with sufficient depth to demonstrate the fading of the UV upturn expected at moderate redshifts. We discuss these observations and the implications for the formation history of galaxies.Comment: 4 pages, Latex. 2 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in ApJ Letter

    How specificity and epidemiology drive the coevolution of static trait diversity in hosts and parasites

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is typically considerable variation in the level of infectivity of parasites and the degree of resistance of hosts within populations. This trait variation is critical not only to the evolutionary dynamics but also to the epidemiology, and potentially the control of infectious disease. However, we lack an understanding of the processes that generate and maintain this trait diversity. We examine theoretically how epidemiological feedbacks and the characteristics of the interaction between host types and parasites strains determine the coevolution of host-parasite diversity. The interactions include continuous characterizations of the key phenotypic features of classic gene-for-gene and matching allele models. We show that when there are costs to resistance in the hosts and infectivity in the parasite, epidemiological feedbacks may generate diversity but this is limited to dimorphism, often of extreme types, in a broad range of realistic infection scenarios. For trait polymorphism, there needs to be both specificity of infection between host types and parasite strains as well as incompatibility between particular strains and types. We emphasize that although the high specificity is well known to promote temporal "Red Queen" diversity, it is costs and combinations of hosts and parasites that cannot infect that will promote static trait diversity.MB was a fellow of the Wissenschaftskolleg zu Berlin 2010–2011 during the writing of this article, and we acknowledge the support from the Natural Environment Research Council (grant NE/K014617/1) to MB and AB

    Far-Ultraviolet Emission from Elliptical Galaxies at z=0.33

    Get PDF
    We present far-ultraviolet (far-UV) images of the rich galaxy cluster ZwCl1358.1+6245, taken with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope (HST). When combined with archival HST observations, our data provide a measurement of the UV-to-optical flux ratio in 8 early-type galaxies at z=0.33. Because the UV flux originates in a population of evolved, hot, horizontal branch (HB) stars, this ratio is potentially one of the most sensitive tracers of age in old populations -- it is expected to fade rapidly with lookback time. We find that the UV emission in these galaxies, at a lookback time of 3.9 Gyr, is significantly weaker than it is in the current epoch, yet similar to that in galaxies at a lookback time of 5.6 Gyr. Taken at face value, these measurements imply different formation epochs for the massive ellipticals in these clusters, but an alternative explanation is a "floor" in the UV emission due to a dispersion in the parameters that govern HB morphology.Comment: 4 pages, Latex. 2 figures. Uses corrected version of emulateapj.sty and apjfonts.sty (included). Accepted for publication in ApJ Letter

    Breaking rotational symmetry in two-flavor color superconductors

    Full text link
    The color superconductivity under flavor asymmetric conditions relevant to the compact star phenomenology is studied within the Nambu-Jona-Lasinio model. We focus on the effect of the deformation of the Fermi surfaces on the pairing properties and the energy budget of the superconducting state. We find that at finite flavor asymmetries the color superconducting BCS state is unstable towards spontaneous quadrupole deformation of the Fermi surfaces of the dd and uu quarks into ellipsoidal form. The ground state of the phase with deformed Fermi surfaces corresponds to a superposition of prolate and oblate deformed Fermi ellipsoids of dd and uu quarks.Comment: 6 pages, 4 figures. Parameter changes, references added, conclusions unchange

    1 May 1913 property agreement

    Get PDF
    Agreement between G. M. D. Bowers, W. W. Colson, and B. R. Colson to hold Dixieland Park land for Theophilus Brown Larimore. The one-page typewritten document is dated 1 May 1913

    The Dearth of UV-Bright Stars in M32: Implications for Stellar Evolution Theory

    Full text link
    Using the Space Telescope Imaging Spectrograph on the Hubble Space Telescope, we have obtained deep far-ultraviolet images of the compact elliptical galaxy M32. When combined with earlier near-ultraviolet images of the same field, these data enable the construction of an ultraviolet color-magnitude diagram of the hot horizontal branch (HB) population and other hot stars in late phases of stellar evolution. We find few post-asymptotic giant branch (PAGB) stars in the galaxy, implying that these stars either cross the HR diagram more rapidly than expected, and/or that they spend a significant fraction of their time enshrouded in circumstellar material. The predicted luminosity gap between the hot HB and its AGB-Manque (AGBM) progeny is less pronounced than expected, especially when compared to evolutionary tracks with enhanced helium abundances, implying that the presence of hot HB stars in this metal-rich population is not due to (Delta Y)/(Delta Z) > 4. Only a small fraction (~2%) of the HB population is hot enough to produce significant UV emission, yet most of the UV emission in this galaxy comes from the hot HB and AGBM stars, implying that PAGB stars are not a significant source of UV emission even in those elliptical galaxies with a weak UV excess.Comment: Accepted for publication in The Astrophysical Journal. Latex, 18 pages, 18 black & white figures, in emulate-ApJ format. Figures 11 & 16 have been degraded due to size constraints; the high-quality version of the paper is at http://www.stsci.edu/~tbrown/research/m32fuv.pd
    • …
    corecore