75 research outputs found
Emergence and Yield of Beans Planted with a Seed-Oriented Planter
Recent observations from an unrelated bean (Phaseolus
vulgaris L.) field experiment indicated a possible relationship
between emergence and seed orientation. To
test the benefits of a "lay flat" orientation, a furrow opener
was developed that horizontally orients bean seeds at
uniform soil depths. Beans planted through this furrow
opener emerged through the soil crust sooner and in significantly
greater numbers than did those planted with
a standard two-disk furrow opener. Oriented and unoriented
plantings of dry and snap beans did not differ
in final total emergence. Nevertheless, early snap
bean yields were greater from the seed-oriented plots. Increased
yield was due to earlier emergence, and uniform
depth of planting. On uncrusted soil, seed orientation
did not significantly increase dry bean yield
A Simple Portable Reflectometer for Field Use
A small, portable, battery-powered field reflectometer,
which utilized an integrating sphere, was developed for
measuring reflectance from soils and intact leaves. Its
light source was a flashlight bulb; its wavelength selection
within the range of 0.4µ to 1.1µ was achieved
with interference filters. Comparison with laboratory
instruments was favorable
Influence of Seed Orientation on Bean Seedling Emergence
Observation from an unrelated field bean experiment
indicated that certain seed orientations might reduce
emergence. Consequently, studies were initiated to determine
if orientation variations occur in planting and if
these variations influence emergence.
Orientation of bean seeds, dropped into both "V" and
flat-bottom furrows, were classified and tabulated. In
"V" furrows almost all orientations were possible; 36% assumed
the "lay-flat" orientation. In the flat-bottom furrow
85% of the beans were in the "lay-flat" position. The
influence of 11 different seed orientations on emergence
was evaluated in greenhouse studies. With crusted soils
seeds planted "hypocotyl end down" produced significantly
less emerged seedlings (1% level) and a lower emergence
rate. Orientation effects were observed to a lesser
degree in noncrusted soils.
The adverse influence of "hypocotyl end down" orientations
was attributed to seed rotation within the soil. For
controlled plantings the "lay-flat" orientation is recommended
due to both its high frequency of occurrence and
high emergence
The Lemaitre-Schwarzschild Problem Revisited
The Lemaitre and Schwarzschild analytical solutions for a relativistic
spherical body of constant density are linked together through the use of the
Weyl quadratic invariant. The critical radius for gravitational collapse of an
incompressible fluid is shown to vary continuously from 9/8 of the
Schwarzschild radius to the Schwarzschild radius itself while the internal
pressures become locally anisotropic.Comment: Final version as accepted by GR&G (to appear in vol. 34, september
2002
Compact anisotropic spheres with prescribed energy density
New exact interior solutions to the Einstein field equations for anisotropic
spheres are found. We utilise a procedure that necessitates a choice for the
energy density and the radial pressure. This class contains the constant
density model of Maharaj and Maartens (Gen. Rel. Grav., Vol 21, 899-905, 1989)
and the variable density model of Gokhroo and Mehra (Gen. Rel. Grav., Vol 26,
75-84, 1994) as special cases. These anisotropic spheres match smoothly to the
Schwarzschild exterior and gravitational potentials are well behaved in the
interior. A graphical analysis of the matter variables is performed which
points to a physically reasonable matter distribution.Comment: 22 pages, 3 figures, to appear in Gen. Rel. Gra
How dark the sky: the JWST backgrounds
We describe the sources of stray light and thermal background that affect
JWST observations; report actual backgrounds as measured from commissioning and
early science observations; compare those background levels to pre-launch
predictions; estimate the impact of the backgrounds on science performance; and
explore how the backgrounds probe the achieved configuration of the deployed
observatory. We find the observatory is limited by the irreducible
astrophysical backgrounds, rather than scattered stray light and thermal
self-emission, for all wavelengths micron, thus meeting the
level 1 requirement. This result was not assured given the open architecture
and thermal challenges of JWST, and is the result of meticulous attention to
stray light and thermal issues in the design, construction, integration, and
test phases. From background considerations alone, JWST will require less
integration time in the near-infrared compared to a system that just met the
stray light requirements; as such, JWST will be even more powerful than
expected for deep imaging at 1--5 micron. In the mid-infrared, the measured
thermal backgrounds closely match pre-launch predictions. The background near
10 micron is slightly higher than predicted before launch, but the impact on
observations is mitigated by the excellent throughput of MIRI, such that
instrument sensitivity will be as good as expected pre-launch. These measured
background levels are fully compatible with JWST's science goals and the Cycle
1 science program currently underway.Comment: Submitted to the "JWST Overview" special issue of PAS
Detecting non-binomial sex allocation when developmental mortality operates
Optimal sex allocation theory is one of the most intricately developed areas of evolutionary ecology. Under a range of conditions, particularly under population sub-division, selection favours sex being allocated to offspring non-randomly, generating non-binomial variances of offspring group sex ratios. Detecting non-binomial sex allocation is complicated by stochastic developmental mortality, as offspring sex can often only be identified on maturity with the sex of non-maturing offspring remaining unknown. We show that current approaches for detecting non-binomiality have limited ability to detect non-binomial sex allocation when developmental mortality has occurred. We present a new procedure using an explicit model of sex allocation and mortality and develop a Bayesian model selection approach (available as an R package). We use the double and multiplicative binomial distributions to model over- and under-dispersed sex allocation and show how to calculate Bayes factors for comparing these alternative models to the null hypothesis of binomial sex allocation.
The ability to detect non-binomial sex allocation is greatly increased, particularly in cases where mortality is common. The use of Bayesian methods allows for the quantification of the evidence in favour of each hypothesis, and our modelling approach provides an improved descriptive capability over existing approaches. We use a simulation study to situations where current methods fail, and we illustrate the approach in real scenarios using empirically obtained datasets on the sexual composition of groups of gregarious parasitoid wasps demonstrate substantial improvements in power for detecting non-binomial sex allocation in situations where current methods fail, and we illustrate the approach in real scenarios using empirically obtained datasets on the sexual composition of groups of gregarious parasitoid wasps
A global spectral library to characterize the world's soil
Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of
- …