75 research outputs found

    Emergence and Yield of Beans Planted with a Seed-Oriented Planter

    Get PDF
    Recent observations from an unrelated bean (Phaseolus vulgaris L.) field experiment indicated a possible relationship between emergence and seed orientation. To test the benefits of a "lay flat" orientation, a furrow opener was developed that horizontally orients bean seeds at uniform soil depths. Beans planted through this furrow opener emerged through the soil crust sooner and in significantly greater numbers than did those planted with a standard two-disk furrow opener. Oriented and unoriented plantings of dry and snap beans did not differ in final total emergence. Nevertheless, early snap bean yields were greater from the seed-oriented plots. Increased yield was due to earlier emergence, and uniform depth of planting. On uncrusted soil, seed orientation did not significantly increase dry bean yield

    A Simple Portable Reflectometer for Field Use

    Get PDF
    A small, portable, battery-powered field reflectometer, which utilized an integrating sphere, was developed for measuring reflectance from soils and intact leaves. Its light source was a flashlight bulb; its wavelength selection within the range of 0.4µ to 1.1µ was achieved with interference filters. Comparison with laboratory instruments was favorable

    Influence of Seed Orientation on Bean Seedling Emergence

    Get PDF
    Observation from an unrelated field bean experiment indicated that certain seed orientations might reduce emergence. Consequently, studies were initiated to determine if orientation variations occur in planting and if these variations influence emergence. Orientation of bean seeds, dropped into both "V" and flat-bottom furrows, were classified and tabulated. In "V" furrows almost all orientations were possible; 36% assumed the "lay-flat" orientation. In the flat-bottom furrow 85% of the beans were in the "lay-flat" position. The influence of 11 different seed orientations on emergence was evaluated in greenhouse studies. With crusted soils seeds planted "hypocotyl end down" produced significantly less emerged seedlings (1% level) and a lower emergence rate. Orientation effects were observed to a lesser degree in noncrusted soils. The adverse influence of "hypocotyl end down" orientations was attributed to seed rotation within the soil. For controlled plantings the "lay-flat" orientation is recommended due to both its high frequency of occurrence and high emergence

    The Lemaitre-Schwarzschild Problem Revisited

    Get PDF
    The Lemaitre and Schwarzschild analytical solutions for a relativistic spherical body of constant density are linked together through the use of the Weyl quadratic invariant. The critical radius for gravitational collapse of an incompressible fluid is shown to vary continuously from 9/8 of the Schwarzschild radius to the Schwarzschild radius itself while the internal pressures become locally anisotropic.Comment: Final version as accepted by GR&G (to appear in vol. 34, september 2002

    Compact anisotropic spheres with prescribed energy density

    Full text link
    New exact interior solutions to the Einstein field equations for anisotropic spheres are found. We utilise a procedure that necessitates a choice for the energy density and the radial pressure. This class contains the constant density model of Maharaj and Maartens (Gen. Rel. Grav., Vol 21, 899-905, 1989) and the variable density model of Gokhroo and Mehra (Gen. Rel. Grav., Vol 26, 75-84, 1994) as special cases. These anisotropic spheres match smoothly to the Schwarzschild exterior and gravitational potentials are well behaved in the interior. A graphical analysis of the matter variables is performed which points to a physically reasonable matter distribution.Comment: 22 pages, 3 figures, to appear in Gen. Rel. Gra

    How dark the sky: the JWST backgrounds

    Full text link
    We describe the sources of stray light and thermal background that affect JWST observations; report actual backgrounds as measured from commissioning and early science observations; compare those background levels to pre-launch predictions; estimate the impact of the backgrounds on science performance; and explore how the backgrounds probe the achieved configuration of the deployed observatory. We find the observatory is limited by the irreducible astrophysical backgrounds, rather than scattered stray light and thermal self-emission, for all wavelengths λ<12.5\lambda < 12.5 micron, thus meeting the level 1 requirement. This result was not assured given the open architecture and thermal challenges of JWST, and is the result of meticulous attention to stray light and thermal issues in the design, construction, integration, and test phases. From background considerations alone, JWST will require less integration time in the near-infrared compared to a system that just met the stray light requirements; as such, JWST will be even more powerful than expected for deep imaging at 1--5 micron. In the mid-infrared, the measured thermal backgrounds closely match pre-launch predictions. The background near 10 micron is slightly higher than predicted before launch, but the impact on observations is mitigated by the excellent throughput of MIRI, such that instrument sensitivity will be as good as expected pre-launch. These measured background levels are fully compatible with JWST's science goals and the Cycle 1 science program currently underway.Comment: Submitted to the "JWST Overview" special issue of PAS

    Detecting non-binomial sex allocation when developmental mortality operates

    Get PDF
    Optimal sex allocation theory is one of the most intricately developed areas of evolutionary ecology. Under a range of conditions, particularly under population sub-division, selection favours sex being allocated to offspring non-randomly, generating non-binomial variances of offspring group sex ratios. Detecting non-binomial sex allocation is complicated by stochastic developmental mortality, as offspring sex can often only be identified on maturity with the sex of non-maturing offspring remaining unknown. We show that current approaches for detecting non-binomiality have limited ability to detect non-binomial sex allocation when developmental mortality has occurred. We present a new procedure using an explicit model of sex allocation and mortality and develop a Bayesian model selection approach (available as an R package). We use the double and multiplicative binomial distributions to model over- and under-dispersed sex allocation and show how to calculate Bayes factors for comparing these alternative models to the null hypothesis of binomial sex allocation. The ability to detect non-binomial sex allocation is greatly increased, particularly in cases where mortality is common. The use of Bayesian methods allows for the quantification of the evidence in favour of each hypothesis, and our modelling approach provides an improved descriptive capability over existing approaches. We use a simulation study to situations where current methods fail, and we illustrate the approach in real scenarios using empirically obtained datasets on the sexual composition of groups of gregarious parasitoid wasps demonstrate substantial improvements in power for detecting non-binomial sex allocation in situations where current methods fail, and we illustrate the approach in real scenarios using empirically obtained datasets on the sexual composition of groups of gregarious parasitoid wasps

    A global spectral library to characterize the world's soil

    Get PDF
    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about soil to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible-near infrared (vis-NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition and be associated to land cover and its global geographic distribution, which acts as a surrogate for global climate variability. We also show the usefulness of the global spectra for predicting soil attributes such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, and pH. Using wavelets to treat the spectra, which were recorded in different laboratories using different spectrometers and methods, helped to improve the spectroscopic modelling. We found that modelling a diverse set of spectra with a machine learning algorithm can find the local relationships in the data to produce accurate predictions of soil properties. The spectroscopic models that we derived are parsimonious and robust, and using them we derived a harmonized global soil attribute dataset, which might serve to facilitate research on soil at the global scale. This spectroscopic approach should help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess and monitor soil at scales ranging from regional to global. New contributions to the library are encouraged so that this work and our collaboration might progress to develop a dynamic and easily updatable database with better global coverage. We hope that this work will reinvigorate our community's discussion towards larger, more coordinated collaborations. We also hope that use of the database will deepen our understanding of soil so that we might sustainably manage it and extend the research outcomes of the soil, earth and environmental sciences towards applications that we have not yet dreamed of
    corecore