10 research outputs found

    A novel leak detection approach in water distribution networks

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper proposes a novel leak monitoring framework aims to improve the operation of water distribution network (WDN). To do that, an online statistical hypothesis test based leak detection is proposed. The main advantages of the developed method are first to deal with the higher required computational time for detecting leaks and then, to update the KPCA model according to the dynamic change of the process. Thus, this can be performed to massive and online datasets. Simulation results obtained from simulated WDN data demonstrate the effectiveness of the proposed technique.Peer ReviewedPostprint (author's final draft

    Online statistical hypothesis test for leak detection in water distribution networks

    Get PDF
    This paper aims at improving the operation of the water distribution networks (WDN) by developing a leak monitoring framework. To do that, an online statistical hypothesis test based on leak detection is proposed. The developed technique, the so-called exponentially weighted online reduced kernel generalized likelihood ratio test (EW-ORKGLRT), is addressed so that the modeling phase is performed using the reduced kernel principal component analysis (KPCA) model, which is capable of dealing with the higher computational cost. Then the computed model is fed to EW-ORKGLRT chart for leak detection purposes. The proposed approach extends the ORKGLRT method to the one that uses exponential weights for the residuals in the moving window. It might be able to further enhance leak detection performance by detecting small and moderate leaks. The developed method’s main advantages are first dealing with the higher required computational time for detecting leaks and then updating the KPCA model according to the dynamic change of the process. The developed method’s performance is evaluated and compared to the conventional techniques using simulated WDN data. The selected performance criteria are the excellent detection rate, false alarm rate, and CPU time.Peer ReviewedPostprint (author's final draft

    Enhanced Neural Network Method-Based Multiscale PCA for Fault Diagnosis: Application to Grid-Connected PV Systems

    No full text
    In this work, an effective Fault Detection and Diagnosis (FDD) strategy designed to increase the performance and accuracy of fault diagnosis in grid-connected photovoltaic (GCPV) systems is developed. The evolved approach is threefold: first, a pre-processing of the training dataset is applied using a multiscale scheme that decomposes the data at multiple scales using high-pass/low-pass filters to separate the noise from the informative attributes and prevent the stochastic samples. Second, a principal component analysis (PCA) technique is applied to the newly obtained data to select, extract, and preserve only the more relevant, informative, and uncorrelated attributes; and finally, to distinguish between the diverse conditions, the extracted attributes are utilized to train the NNs classifiers. In this study, an effort is made to take into consideration all potential and frequent faults that might occur in PV systems. Thus, twenty-one faulty scenarios (line-to-line, line-to-ground, connectivity faults, and faults that can affect the normal operation of the bay-pass diodes) have been introduced and treated at different levels and locations; each scenario comprises various and diverse conditions, including the occurrence of simple faults in the PV1 array, simple faults in the PV2 array, multiple faults in PV1, multiple faults in PV2, and mixed faults in both PV arrays, in order to ensure a complete and global analysis, thereby reducing the loss of generated energy and maintaining the reliability and efficiency of such systems. The obtained outcomes demonstrate that the proposed approach not only achieves good accuracies but also reduces runtimes during the diagnosis process by avoiding noisy and stochastic data, thereby removing irrelevant and correlated samples from the original dataset

    A novel hybrid methodology for fault diagnosis of wind energy conversion systems

    No full text
    This paper proposes effective Random Forest (RF)-based fault detection and diagnosis for wind energy conversion (WEC) systems. The proposed technique involved two major steps: feature selection and fault classification. Feature selection pre-processing is an important step to increase the accuracy of the classification algorithm and decrease the dimensionality of a dataset. Therefore, a hybrid feature selection based diagnosis technique, that can preserve the advantages of wrapper and filter algorithms as well as RF model, is proposed. In the first phase, the neighborhood component analysis (NCA) filter algorithm is used to reduce and select only the pertinent features from the original raw data. This phase helps in improving data by removing redundant and unimportant features. In the second step, we applied a wrapper technique called equilibrium optimizer to get optimized features and better classification accuracy. The main idea behind using a hybrid feature selection step is to select a small subset from original data that can achieve maximum classification accuracy and reduce the computational complexity of the RF technique. Then, the sensitive and significant characteristics are transmitted to the RF model for classification purposes. The presented results prove that the proposed methods offer enhanced diagnosis accuracy when applied to WEC systems

    Wind Power Converter Fault Diagnosis Using Reduced Kernel PCA-Based BiLSTM

    No full text
    In this paper, we present a novel and effective fault detection and diagnosis (FDD) method for a wind energy converter (WEC) system with a nominal power of 15 KW, which is designed to significantly reduce the complexity and computation time and possibly increase the accuracy of fault diagnosis. This strategy involves three significant steps: first, a size reduction procedure is applied to the training dataset, which uses hierarchical K-means clustering and Euclidean distance schemes; second, both significantly reduced training datasets are utilized by the KPCA technique to extract and select the most sensitive and significant features; and finally, in order to distinguish between the diverse WEC system operating modes, the selected features are used to train a bidirectional long-short-term memory classifier (BiLSTM). In this study, various fault scenarios (short-circuit (SC) faults and open-circuit (OC) faults) were injected, and each scenario comprised different cases (simple, multiple, and mixed faults) on different sides and locations (generator-side converter and grid-side converter) to ensure a comprehensive and global evaluation. The obtained results show that the proposed strategy for FDD via both applied dataset size reduction methods not only improves the accuracy but also provides an efficient reduction in computation time and storage space

    Enhanced fault diagnosis of wind energy conversion systems using ensemble learning based on sine cosine algorithm

    No full text
    Abstract This paper investigates the problem of incipient fault detection and diagnosis (FDD) in wind energy conversion systems (WECS) using an innovative and effective approach called the ensemble learning-sine cosine optimization algorithm (EL-SCOA). The evolved strategy involves two primary steps: first, a sine-cosine algorithm is used to extract and optimize features in order to only select the most descriptive ones. Second, to further improve the capability, thereby providing the highest accuracy performance, the newly gathered dataset is introduced as input to an ensemble learning paradigm, which merges the benefits of boosting and bagging techniques with an artificial neural network classifier. The essential goal of the developed proposal is to discriminate between the diverse operating conditions (one healthy and six faulty conditions). Three potential and frequent types of faults that can affect the system behaviors including short-circuit, open-circuit, and wear-out are considered and thereby injected at diverse locations and sides (grid and generator sides) in order to evaluate the availability and performance of the proposed technique when compared to the conventional FDD methods. The diagnosis performance is analyzed in terms of accuracy, recall, precision, and computation time. The acquired outcomes demonstrate the efficiency of the suggested diagnostic paradigm compared to conventional FDD techniques (accuracy rate has been successfully achieved 98.35%)

    Effective Fault Detection and Diagnosis for Power Converters in Wind Turbine Systems Using KPCA-Based BiLSTM

    No full text
    The current work presents an effective fault detection and diagnosis (FDD) technique in wind energy converter (WEC) systems. The proposed FDD framework merges the benefits of kernel principal component analysis (KPCA) model and the bidirectional long short-term memory (BiLSTM) classifier. In the developed FDD approach, the KPCA model is applied to extract and select the most effective features, while the BiLSTM is utilized for classification purposes. The developed KPCA-based BiLSTM approach involves two main steps: feature extraction and selection, and fault classification. The KPCA model is developed in order to select and extract the most efficient features and the final features are fed to the BiLSTM to distinguish between different working modes. Different simulation scenarios are considered in this study in order to show the robustness and performance of the developed technique when compared to the conventional FDD methods. To evaluate the effectiveness of the proposed KPCA-based BiLSTM approach, we utilize data obtained from a healthy WTC, which are then injected with several fault scenarios: simple fault generator-side, simple fault grid-side, multiple fault generator-side, multiple fault grid-side, and mixed fault on both sides. The diagnosis performance is analyzed in terms of accuracy, recall, precision, and computation time. Furthermore, the efficiency of fault diagnosis is shown by the classification accuracy parameter. The experimental results show the efficiency of the developed KPCA-based BiLSTM technique compared to the classical FDD techniques (an accuracy of 97.30%)

    Genetic-Algorithm-Based Neural Network for Fault Detection and Diagnosis: Application to Grid-Connected Photovoltaic Systems

    No full text
    Modern photovoltaic (PV) systems have received significant attention regarding fault detection and diagnosis (FDD) for enhancing their operation by boosting their dependability, availability, and necessary safety. As a result, the problem of FDD in grid-connected PV (GCPV) systems is discussed in this work. Tools for feature extraction and selection and fault classification are applied in the developed FDD approach to monitor the GCPV system under various operating conditions. This is addressed such that the genetic algorithm (GA) technique is used for selecting the best features and the artificial neural network (ANN) classifier is applied for fault diagnosis. Only the most important features are selected to be supplied to the ANN classifier. The classification performance is determined via different metrics for various GA-based ANN classifiers using data extracted from the healthy and faulty data of the GCPV system. A thorough analysis of 16 faults applied on the module is performed. In general terms, the faults observed in the system are classified under three categories: simple, multiple, and mixed. The obtained results confirm the feasibility and effectiveness with a low computation time of the proposed approach for fault diagnosis
    corecore