10 research outputs found

    RÎle de ROR2 et de la Polarité Cellulaire Planaire dans la réponse des cellules endothéliales au flux sanguin

    No full text
    Endothelial cells (ECs) lining vessels sense and transduce mechanical forces created by blood flow into intracellular signals, and are especially sensitive to shear stress. Depending on the vascular area, ECs are exposed to different flow patterns: mainly laminar in straight part of arteries, and disturbed, considered as atheroprone, in regions of curvature or bifurcation. The objective of this thesis is to study the involvement of ROR2, a tyrosine kinase receptor known to regulate Planar Cell Polarity pathway, in endothelial responses to blood flow-induced shear stress.First, we focused on EC responses to laminar flow which induces cell elongation and polarization toward the flow axis and an atheroprotective phenotype. By in vivo approaches, using transgenic mice deleted for Ror2 specifically in ECs (Ror2iECKO), and in vitro using loss- and gain-of-function approaches, we demonstrated the role of ROR2 in the maintenance of flow-induced collective EC polarization. In vitro, laminar flow induced a relocalization of ROR2 at cell-cell junctions, associated with an interaction with VE-Cadherin and ÎČ-catenin. ROR2 expressed at the lateral pole of the cell induced adherens junctions remodeling in these areas. Regulation of EC polarization, as well as ROR2-induced junctional remodeling, were dependent on Cdc42 activation. These results demonstrated that the ROR2/PCP pathway regulates junctional remodeling at the cell pole and thus the collective polarization of endothelial cells.In a second part, we focused on EC responses to disturbed flow. Indeed, in vivo ROR2 was highly expressed in ECs of disturbed flow areas such as in the inner curvature of the aortic arch or in arterial bifurcations. We hypothesized that ROR2 expressed in these areas might control the inflammatory response and/or atherosclerotic plaque formation. In vitro, ROR2 loss of function induced a decrease in the expression of pro-inflammatory cytokines and adhesion molecules in ECs exposed to disturbed flow, suggesting a pro-inflammatory effect of ROR2. In vivo, deletion of Ror2 decreased leukocyte recruitment in the aortic arch of mice under physiological conditions but also in a mouse model of atherosclerosis (Double transgenic mice: ApoE-/-, Ror2iECKO). Thus, the endothelial expression of ROR2 in the aortic arch or in the bifurcations could activate the expression of pro-inflammatory genes (such as interleukin 1 and 8) and/or the expression of adhesion molecules to finally modify EC properties when they are subjected to disturbed flow.Together, these results showed that ROR2 is a new actor in the response of endothelial cells to blood flow by controlling cell polarity and the expression of genes involved in the maintenance of vascular integrity.Les cellules endothĂ©liales (CE) tapissant les vaisseaux, perçoivent et traduisent les forces mĂ©caniques du flux sanguin en signaux intracellulaires, et sont particuliĂšrement sensibles aux forces de cisaillement. Cependant, en fonction des rĂ©gions vasculaires les CE sont exposĂ©es Ă  diffĂ©rents types de flux : principalement laminaire dans les rĂ©gions droites de l’arbre vasculaire, et turbulent dans les rĂ©gions de courbure ou de bifurcations, considĂ©rĂ© comme athĂ©roprone. Le but de cette thĂšse est d’étudier l’implication de ROR2, un acteur de la PolaritĂ© Cellulaire Planaire (PCP), dans la rĂ©ponse vasculaire aux contraintes de cisaillement induites par le flux sanguin.Dans un premier temps, nous nous sommes focalisĂ©s sur les rĂ©ponses des CE exposĂ©es Ă  un flux laminaire. En effet dans les zones de flux laminaire les cellules s’allongent et se polarisent en fonction du flux, et prĂ©sentent un phĂ©notype athĂ©roprotecteur. Par des approches in vivo, en utilisant des souris transgĂ©niques dĂ©lĂ©tĂ©es pour Ror2 spĂ©cifiquement dans les CE (Ror2iECKO), et par des approches in vitro de perte et gain de fonction, nous avons dĂ©montrĂ© l’importance de ROR2 dans le maintien de la polarisation collective des CE induite par le flux. In vitro, le flux laminaire induit une relocalisation de ROR2 au niveau des jonctions cellulaires, associĂ©e Ă  une interaction avec la VE-CadhĂ©rine et la ÎČ-catĂ©nine. ROR2 exprimĂ© au niveau du pĂŽle latĂ©ral de la cellule induit un remodelage des jonctions adhĂ©rentes. La rĂ©gulation de la polarisation des CE, ainsi que le remodelage des jonctions induit par ROR2 sont dĂ©pendants de l’activation de Cdc42. Ces rĂ©sultats dĂ©montrent que la voie ROR2/PCP rĂ©gule le remodelage des jonctions cellulaires aux pĂŽles de la cellule et ainsi la polarisation collective des cellules endothĂ©liales.Dans une deuxiĂšme partie, nous nous sommes focalisĂ©s sur la rĂ©ponse des cellules endothĂ©liales dans un contexte de flux turbulent, athĂ©roprone. En effet, ROR2 est fortement exprimĂ© in vivo dans les CE exposĂ©es Ă  un flux turbulent comme dans la courbure interne de la crosse aortique ou dans les bifurcations artĂ©rielles. Nous avons Ă©mis l’hypothĂšse que ROR2 exprimĂ© dans ces zones pourrait contrĂŽler la rĂ©ponse inflammatoire et/ou la formation de la plaque d’athĂ©rome. In vitro, la perte de fonction de ROR2 induit une diminution de l’expression des cytokines pro-inflammatoires et des molĂ©cules d’adhĂ©sion dans les CE exposĂ©es au flux turbulent, suggĂ©rant un rĂŽle pro-inflammatoire de ROR2. In vivo, la dĂ©lĂ©tion de Ror2 diminue le recrutement des leucocytes dans la crosse aortique des souris en conditions physiologiques mais aussi dans un modĂšle murin d’athĂ©rosclĂ©rose (souris doublement transgĂ©nique: ApoE-/-, Ror2iECKO). Ainsi l’expression endothĂ©liale de ROR2 dans la crosse aortique ou dans les bifurcations, pourrait activer l’expression de gĂšnes pro-inflammatoires (comme les interleukines 1 et 8) et/ou modifier l’expression de molĂ©cules d’adhĂ©sion et finalement rĂ©guler les propriĂ©tĂ©s des CE lorsqu’elles sont soumises Ă  un flux turbulent.L’ensemble de ces rĂ©sultats a permis de montrer que ROR2 est un nouvel acteur de la rĂ©ponse des cellules endothĂ©liales au flux sanguin en contrĂŽlant la polaritĂ© cellulaire, et l’expression de gĂšnes impliquĂ©s dans le maintien de l’intĂ©gritĂ© vasculaire

    Involvement of ROR2 and Planar Cell Polarity in endothelial cell response to blood flow

    No full text
    Les cellules endothĂ©liales (CE) tapissant les vaisseaux, perçoivent et traduisent les forces mĂ©caniques du flux sanguin en signaux intracellulaires, et sont particuliĂšrement sensibles aux forces de cisaillement. Cependant, en fonction des rĂ©gions vasculaires les CE sont exposĂ©es Ă  diffĂ©rents types de flux : principalement laminaire dans les rĂ©gions droites de l’arbre vasculaire, et turbulent dans les rĂ©gions de courbure ou de bifurcations, considĂ©rĂ© comme athĂ©roprone. Le but de cette thĂšse est d’étudier l’implication de ROR2, un acteur de la PolaritĂ© Cellulaire Planaire (PCP), dans la rĂ©ponse vasculaire aux contraintes de cisaillement induites par le flux sanguin.Dans un premier temps, nous nous sommes focalisĂ©s sur les rĂ©ponses des CE exposĂ©es Ă  un flux laminaire. En effet dans les zones de flux laminaire les cellules s’allongent et se polarisent en fonction du flux, et prĂ©sentent un phĂ©notype athĂ©roprotecteur. Par des approches in vivo, en utilisant des souris transgĂ©niques dĂ©lĂ©tĂ©es pour Ror2 spĂ©cifiquement dans les CE (Ror2iECKO), et par des approches in vitro de perte et gain de fonction, nous avons dĂ©montrĂ© l’importance de ROR2 dans le maintien de la polarisation collective des CE induite par le flux. In vitro, le flux laminaire induit une relocalisation de ROR2 au niveau des jonctions cellulaires, associĂ©e Ă  une interaction avec la VE-CadhĂ©rine et la ÎČ-catĂ©nine. ROR2 exprimĂ© au niveau du pĂŽle latĂ©ral de la cellule induit un remodelage des jonctions adhĂ©rentes. La rĂ©gulation de la polarisation des CE, ainsi que le remodelage des jonctions induit par ROR2 sont dĂ©pendants de l’activation de Cdc42. Ces rĂ©sultats dĂ©montrent que la voie ROR2/PCP rĂ©gule le remodelage des jonctions cellulaires aux pĂŽles de la cellule et ainsi la polarisation collective des cellules endothĂ©liales.Dans une deuxiĂšme partie, nous nous sommes focalisĂ©s sur la rĂ©ponse des cellules endothĂ©liales dans un contexte de flux turbulent, athĂ©roprone. En effet, ROR2 est fortement exprimĂ© in vivo dans les CE exposĂ©es Ă  un flux turbulent comme dans la courbure interne de la crosse aortique ou dans les bifurcations artĂ©rielles. Nous avons Ă©mis l’hypothĂšse que ROR2 exprimĂ© dans ces zones pourrait contrĂŽler la rĂ©ponse inflammatoire et/ou la formation de la plaque d’athĂ©rome. In vitro, la perte de fonction de ROR2 induit une diminution de l’expression des cytokines pro-inflammatoires et des molĂ©cules d’adhĂ©sion dans les CE exposĂ©es au flux turbulent, suggĂ©rant un rĂŽle pro-inflammatoire de ROR2. In vivo, la dĂ©lĂ©tion de Ror2 diminue le recrutement des leucocytes dans la crosse aortique des souris en conditions physiologiques mais aussi dans un modĂšle murin d’athĂ©rosclĂ©rose (souris doublement transgĂ©nique: ApoE-/-, Ror2iECKO). Ainsi l’expression endothĂ©liale de ROR2 dans la crosse aortique ou dans les bifurcations, pourrait activer l’expression de gĂšnes pro-inflammatoires (comme les interleukines 1 et 8) et/ou modifier l’expression de molĂ©cules d’adhĂ©sion et finalement rĂ©guler les propriĂ©tĂ©s des CE lorsqu’elles sont soumises Ă  un flux turbulent.L’ensemble de ces rĂ©sultats a permis de montrer que ROR2 est un nouvel acteur de la rĂ©ponse des cellules endothĂ©liales au flux sanguin en contrĂŽlant la polaritĂ© cellulaire, et l’expression de gĂšnes impliquĂ©s dans le maintien de l’intĂ©gritĂ© vasculaire.Endothelial cells (ECs) lining vessels sense and transduce mechanical forces created by blood flow into intracellular signals, and are especially sensitive to shear stress. Depending on the vascular area, ECs are exposed to different flow patterns: mainly laminar in straight part of arteries, and disturbed, considered as atheroprone, in regions of curvature or bifurcation. The objective of this thesis is to study the involvement of ROR2, a tyrosine kinase receptor known to regulate Planar Cell Polarity pathway, in endothelial responses to blood flow-induced shear stress.First, we focused on EC responses to laminar flow which induces cell elongation and polarization toward the flow axis and an atheroprotective phenotype. By in vivo approaches, using transgenic mice deleted for Ror2 specifically in ECs (Ror2iECKO), and in vitro using loss- and gain-of-function approaches, we demonstrated the role of ROR2 in the maintenance of flow-induced collective EC polarization. In vitro, laminar flow induced a relocalization of ROR2 at cell-cell junctions, associated with an interaction with VE-Cadherin and ÎČ-catenin. ROR2 expressed at the lateral pole of the cell induced adherens junctions remodeling in these areas. Regulation of EC polarization, as well as ROR2-induced junctional remodeling, were dependent on Cdc42 activation. These results demonstrated that the ROR2/PCP pathway regulates junctional remodeling at the cell pole and thus the collective polarization of endothelial cells.In a second part, we focused on EC responses to disturbed flow. Indeed, in vivo ROR2 was highly expressed in ECs of disturbed flow areas such as in the inner curvature of the aortic arch or in arterial bifurcations. We hypothesized that ROR2 expressed in these areas might control the inflammatory response and/or atherosclerotic plaque formation. In vitro, ROR2 loss of function induced a decrease in the expression of pro-inflammatory cytokines and adhesion molecules in ECs exposed to disturbed flow, suggesting a pro-inflammatory effect of ROR2. In vivo, deletion of Ror2 decreased leukocyte recruitment in the aortic arch of mice under physiological conditions but also in a mouse model of atherosclerosis (Double transgenic mice: ApoE-/-, Ror2iECKO). Thus, the endothelial expression of ROR2 in the aortic arch or in the bifurcations could activate the expression of pro-inflammatory genes (such as interleukin 1 and 8) and/or the expression of adhesion molecules to finally modify EC properties when they are subjected to disturbed flow.Together, these results showed that ROR2 is a new actor in the response of endothelial cells to blood flow by controlling cell polarity and the expression of genes involved in the maintenance of vascular integrity

    Involvement of ROR2 and Planar Cell Polarity in endothelial cell response to blood flow

    No full text
    Les cellules endothĂ©liales (CE) tapissant les vaisseaux, perçoivent et traduisent les forces mĂ©caniques du flux sanguin en signaux intracellulaires, et sont particuliĂšrement sensibles aux forces de cisaillement. Cependant, en fonction des rĂ©gions vasculaires les CE sont exposĂ©es Ă  diffĂ©rents types de flux : principalement laminaire dans les rĂ©gions droites de l’arbre vasculaire, et turbulent dans les rĂ©gions de courbure ou de bifurcations, considĂ©rĂ© comme athĂ©roprone. Le but de cette thĂšse est d’étudier l’implication de ROR2, un acteur de la PolaritĂ© Cellulaire Planaire (PCP), dans la rĂ©ponse vasculaire aux contraintes de cisaillement induites par le flux sanguin.Dans un premier temps, nous nous sommes focalisĂ©s sur les rĂ©ponses des CE exposĂ©es Ă  un flux laminaire. En effet dans les zones de flux laminaire les cellules s’allongent et se polarisent en fonction du flux, et prĂ©sentent un phĂ©notype athĂ©roprotecteur. Par des approches in vivo, en utilisant des souris transgĂ©niques dĂ©lĂ©tĂ©es pour Ror2 spĂ©cifiquement dans les CE (Ror2iECKO), et par des approches in vitro de perte et gain de fonction, nous avons dĂ©montrĂ© l’importance de ROR2 dans le maintien de la polarisation collective des CE induite par le flux. In vitro, le flux laminaire induit une relocalisation de ROR2 au niveau des jonctions cellulaires, associĂ©e Ă  une interaction avec la VE-CadhĂ©rine et la ÎČ-catĂ©nine. ROR2 exprimĂ© au niveau du pĂŽle latĂ©ral de la cellule induit un remodelage des jonctions adhĂ©rentes. La rĂ©gulation de la polarisation des CE, ainsi que le remodelage des jonctions induit par ROR2 sont dĂ©pendants de l’activation de Cdc42. Ces rĂ©sultats dĂ©montrent que la voie ROR2/PCP rĂ©gule le remodelage des jonctions cellulaires aux pĂŽles de la cellule et ainsi la polarisation collective des cellules endothĂ©liales.Dans une deuxiĂšme partie, nous nous sommes focalisĂ©s sur la rĂ©ponse des cellules endothĂ©liales dans un contexte de flux turbulent, athĂ©roprone. En effet, ROR2 est fortement exprimĂ© in vivo dans les CE exposĂ©es Ă  un flux turbulent comme dans la courbure interne de la crosse aortique ou dans les bifurcations artĂ©rielles. Nous avons Ă©mis l’hypothĂšse que ROR2 exprimĂ© dans ces zones pourrait contrĂŽler la rĂ©ponse inflammatoire et/ou la formation de la plaque d’athĂ©rome. In vitro, la perte de fonction de ROR2 induit une diminution de l’expression des cytokines pro-inflammatoires et des molĂ©cules d’adhĂ©sion dans les CE exposĂ©es au flux turbulent, suggĂ©rant un rĂŽle pro-inflammatoire de ROR2. In vivo, la dĂ©lĂ©tion de Ror2 diminue le recrutement des leucocytes dans la crosse aortique des souris en conditions physiologiques mais aussi dans un modĂšle murin d’athĂ©rosclĂ©rose (souris doublement transgĂ©nique: ApoE-/-, Ror2iECKO). Ainsi l’expression endothĂ©liale de ROR2 dans la crosse aortique ou dans les bifurcations, pourrait activer l’expression de gĂšnes pro-inflammatoires (comme les interleukines 1 et 8) et/ou modifier l’expression de molĂ©cules d’adhĂ©sion et finalement rĂ©guler les propriĂ©tĂ©s des CE lorsqu’elles sont soumises Ă  un flux turbulent.L’ensemble de ces rĂ©sultats a permis de montrer que ROR2 est un nouvel acteur de la rĂ©ponse des cellules endothĂ©liales au flux sanguin en contrĂŽlant la polaritĂ© cellulaire, et l’expression de gĂšnes impliquĂ©s dans le maintien de l’intĂ©gritĂ© vasculaire.Endothelial cells (ECs) lining vessels sense and transduce mechanical forces created by blood flow into intracellular signals, and are especially sensitive to shear stress. Depending on the vascular area, ECs are exposed to different flow patterns: mainly laminar in straight part of arteries, and disturbed, considered as atheroprone, in regions of curvature or bifurcation. The objective of this thesis is to study the involvement of ROR2, a tyrosine kinase receptor known to regulate Planar Cell Polarity pathway, in endothelial responses to blood flow-induced shear stress.First, we focused on EC responses to laminar flow which induces cell elongation and polarization toward the flow axis and an atheroprotective phenotype. By in vivo approaches, using transgenic mice deleted for Ror2 specifically in ECs (Ror2iECKO), and in vitro using loss- and gain-of-function approaches, we demonstrated the role of ROR2 in the maintenance of flow-induced collective EC polarization. In vitro, laminar flow induced a relocalization of ROR2 at cell-cell junctions, associated with an interaction with VE-Cadherin and ÎČ-catenin. ROR2 expressed at the lateral pole of the cell induced adherens junctions remodeling in these areas. Regulation of EC polarization, as well as ROR2-induced junctional remodeling, were dependent on Cdc42 activation. These results demonstrated that the ROR2/PCP pathway regulates junctional remodeling at the cell pole and thus the collective polarization of endothelial cells.In a second part, we focused on EC responses to disturbed flow. Indeed, in vivo ROR2 was highly expressed in ECs of disturbed flow areas such as in the inner curvature of the aortic arch or in arterial bifurcations. We hypothesized that ROR2 expressed in these areas might control the inflammatory response and/or atherosclerotic plaque formation. In vitro, ROR2 loss of function induced a decrease in the expression of pro-inflammatory cytokines and adhesion molecules in ECs exposed to disturbed flow, suggesting a pro-inflammatory effect of ROR2. In vivo, deletion of Ror2 decreased leukocyte recruitment in the aortic arch of mice under physiological conditions but also in a mouse model of atherosclerosis (Double transgenic mice: ApoE-/-, Ror2iECKO). Thus, the endothelial expression of ROR2 in the aortic arch or in the bifurcations could activate the expression of pro-inflammatory genes (such as interleukin 1 and 8) and/or the expression of adhesion molecules to finally modify EC properties when they are subjected to disturbed flow.Together, these results showed that ROR2 is a new actor in the response of endothelial cells to blood flow by controlling cell polarity and the expression of genes involved in the maintenance of vascular integrity

    RÎle de ROR2 et de la Polarité Cellulaire Planaire dans la réponse des cellules endothéliales au flux sanguin

    No full text
    Endothelial cells (ECs) lining vessels sense and transduce mechanical forces created by blood flow into intracellular signals, and are especially sensitive to shear stress. Depending on the vascular area, ECs are exposed to different flow patterns: mainly laminar in straight part of arteries, and disturbed, considered as atheroprone, in regions of curvature or bifurcation. The objective of this thesis is to study the involvement of ROR2, a tyrosine kinase receptor known to regulate Planar Cell Polarity pathway, in endothelial responses to blood flow-induced shear stress.First, we focused on EC responses to laminar flow which induces cell elongation and polarization toward the flow axis and an atheroprotective phenotype. By in vivo approaches, using transgenic mice deleted for Ror2 specifically in ECs (Ror2iECKO), and in vitro using loss- and gain-of-function approaches, we demonstrated the role of ROR2 in the maintenance of flow-induced collective EC polarization. In vitro, laminar flow induced a relocalization of ROR2 at cell-cell junctions, associated with an interaction with VE-Cadherin and ÎČ-catenin. ROR2 expressed at the lateral pole of the cell induced adherens junctions remodeling in these areas. Regulation of EC polarization, as well as ROR2-induced junctional remodeling, were dependent on Cdc42 activation. These results demonstrated that the ROR2/PCP pathway regulates junctional remodeling at the cell pole and thus the collective polarization of endothelial cells.In a second part, we focused on EC responses to disturbed flow. Indeed, in vivo ROR2 was highly expressed in ECs of disturbed flow areas such as in the inner curvature of the aortic arch or in arterial bifurcations. We hypothesized that ROR2 expressed in these areas might control the inflammatory response and/or atherosclerotic plaque formation. In vitro, ROR2 loss of function induced a decrease in the expression of pro-inflammatory cytokines and adhesion molecules in ECs exposed to disturbed flow, suggesting a pro-inflammatory effect of ROR2. In vivo, deletion of Ror2 decreased leukocyte recruitment in the aortic arch of mice under physiological conditions but also in a mouse model of atherosclerosis (Double transgenic mice: ApoE-/-, Ror2iECKO). Thus, the endothelial expression of ROR2 in the aortic arch or in the bifurcations could activate the expression of pro-inflammatory genes (such as interleukin 1 and 8) and/or the expression of adhesion molecules to finally modify EC properties when they are subjected to disturbed flow.Together, these results showed that ROR2 is a new actor in the response of endothelial cells to blood flow by controlling cell polarity and the expression of genes involved in the maintenance of vascular integrity.Les cellules endothĂ©liales (CE) tapissant les vaisseaux, perçoivent et traduisent les forces mĂ©caniques du flux sanguin en signaux intracellulaires, et sont particuliĂšrement sensibles aux forces de cisaillement. Cependant, en fonction des rĂ©gions vasculaires les CE sont exposĂ©es Ă  diffĂ©rents types de flux : principalement laminaire dans les rĂ©gions droites de l’arbre vasculaire, et turbulent dans les rĂ©gions de courbure ou de bifurcations, considĂ©rĂ© comme athĂ©roprone. Le but de cette thĂšse est d’étudier l’implication de ROR2, un acteur de la PolaritĂ© Cellulaire Planaire (PCP), dans la rĂ©ponse vasculaire aux contraintes de cisaillement induites par le flux sanguin.Dans un premier temps, nous nous sommes focalisĂ©s sur les rĂ©ponses des CE exposĂ©es Ă  un flux laminaire. En effet dans les zones de flux laminaire les cellules s’allongent et se polarisent en fonction du flux, et prĂ©sentent un phĂ©notype athĂ©roprotecteur. Par des approches in vivo, en utilisant des souris transgĂ©niques dĂ©lĂ©tĂ©es pour Ror2 spĂ©cifiquement dans les CE (Ror2iECKO), et par des approches in vitro de perte et gain de fonction, nous avons dĂ©montrĂ© l’importance de ROR2 dans le maintien de la polarisation collective des CE induite par le flux. In vitro, le flux laminaire induit une relocalisation de ROR2 au niveau des jonctions cellulaires, associĂ©e Ă  une interaction avec la VE-CadhĂ©rine et la ÎČ-catĂ©nine. ROR2 exprimĂ© au niveau du pĂŽle latĂ©ral de la cellule induit un remodelage des jonctions adhĂ©rentes. La rĂ©gulation de la polarisation des CE, ainsi que le remodelage des jonctions induit par ROR2 sont dĂ©pendants de l’activation de Cdc42. Ces rĂ©sultats dĂ©montrent que la voie ROR2/PCP rĂ©gule le remodelage des jonctions cellulaires aux pĂŽles de la cellule et ainsi la polarisation collective des cellules endothĂ©liales.Dans une deuxiĂšme partie, nous nous sommes focalisĂ©s sur la rĂ©ponse des cellules endothĂ©liales dans un contexte de flux turbulent, athĂ©roprone. En effet, ROR2 est fortement exprimĂ© in vivo dans les CE exposĂ©es Ă  un flux turbulent comme dans la courbure interne de la crosse aortique ou dans les bifurcations artĂ©rielles. Nous avons Ă©mis l’hypothĂšse que ROR2 exprimĂ© dans ces zones pourrait contrĂŽler la rĂ©ponse inflammatoire et/ou la formation de la plaque d’athĂ©rome. In vitro, la perte de fonction de ROR2 induit une diminution de l’expression des cytokines pro-inflammatoires et des molĂ©cules d’adhĂ©sion dans les CE exposĂ©es au flux turbulent, suggĂ©rant un rĂŽle pro-inflammatoire de ROR2. In vivo, la dĂ©lĂ©tion de Ror2 diminue le recrutement des leucocytes dans la crosse aortique des souris en conditions physiologiques mais aussi dans un modĂšle murin d’athĂ©rosclĂ©rose (souris doublement transgĂ©nique: ApoE-/-, Ror2iECKO). Ainsi l’expression endothĂ©liale de ROR2 dans la crosse aortique ou dans les bifurcations, pourrait activer l’expression de gĂšnes pro-inflammatoires (comme les interleukines 1 et 8) et/ou modifier l’expression de molĂ©cules d’adhĂ©sion et finalement rĂ©guler les propriĂ©tĂ©s des CE lorsqu’elles sont soumises Ă  un flux turbulent.L’ensemble de ces rĂ©sultats a permis de montrer que ROR2 est un nouvel acteur de la rĂ©ponse des cellules endothĂ©liales au flux sanguin en contrĂŽlant la polaritĂ© cellulaire, et l’expression de gĂšnes impliquĂ©s dans le maintien de l’intĂ©gritĂ© vasculaire

    Metabolic Syndrome and Hypertension Resulting from Fructose Enriched Diet in Wistar Rats

    No full text
    Increased sugar consumption, especially fructose, is strongly related to the development of type 2 diabetes (T2D) and metabolic syndrome. The aim of this study was to evaluate long term effects of fructose supplementation on Wistar rats. Three-week-old male rats were randomly divided into 2 groups: control (C; n=14) and fructose fed (FF; n=18), with a fructose enriched drink (20–25% w/v fructose in water) for 21 weeks. Systolic blood pressure, fasting glycemia, and bodyweight were regularly measured. Glucose tolerance was evaluated three times using an oral glucose tolerance test. Insulin levels were measured concomitantly and insulin resistance markers were evaluated (HOMA 2-IR, Insulin Sensitivity Index for glycemia (ISI-gly)). Lipids profile was evaluated on plasma. This fructose supplementation resulted in the early induction of hypertension without renal failure (stable theoretical creatinine clearance) and in the progressive development of fasting hyperglycemia and insulin resistance (higher HOMA 2-IR, lower ISI-gly) without modification of glucose tolerance. FF rats presented dyslipidemia (higher plasma triglycerides) and early sign of liver malfunction (higher liver weight). Although abdominal fat weight was increased in FF rats, no significant overweight was found. In Wistar rats, 21 weeks of fructose supplementation induced a metabolic syndrome (hypertension, insulin resistance, and dyslipidemia) but not T2D

    Arterioscler Thromb Vasc Biol

    No full text
    Endothelial cells (ECs) are sensitive to physical forces created by blood flow, especially to laminar shear stress. Among the cell responses to laminar flow, EC polarization against the flow direction emerges as a key event, particularly during the development and remodeling of the vascular network. EC adopt an elongated planar cell shape with an asymmetrical distribution of intracellular organelles along the axis of blood flow. This study aimed to investigate the involvement of planar cell polarity via the receptor ROR2 (receptor tyrosine kinase-like orphan receptor 2) in endothelial responses to laminar shear stress. We generated a genetic mouse model with EC-specific deletion of , in combination with in vitro approaches involving loss- and gain-of-function experiments. During the first 2 weeks of life, the endothelium of the mouse aorta undergoes a rapid remodeling associated with a loss of EC polarization against the flow direction. Notably, we found a correlation between ROR2 expression and endothelial polarization levels. Our findings demonstrate that deletion of in murine ECs impaired their polarization during the postnatal development of the aorta. In vitro experiments further validated the essential role of ROR2 in both EC collective polarization and directed migration under laminar flow conditions. Exposure to laminar shear stress triggered the relocalization of ROR2 to cell-cell junctions where it formed a complex with VE-Cadherin and ÎČ-catenin, thereby regulating adherens junctions remodeling at the rear and front poles of ECs. Finally, we showed that adherens junctions remodeling and cell polarity induced by ROR2 were dependent on the activation of the small GTPase Cdc42. This study identified ROR2/planar cell polarity pathway as a new mechanism controlling and coordinating collective polarity patterns of EC during shear stress response

    J Cereb Blood Flow Metab

    No full text
    Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies

    Arterioscler Thromb Vasc Biol

    No full text
    Genome-wide association studies have revealed robust associations of common genetic polymorphisms in an intron of the PHACTR-1 (phosphatase and actin regulator 1) gene (chr6p24), with cervical artery dissection, spontaneous coronary artery dissection, and fibromuscular dysplasia. The aim was to assess its role in the pathogenesis of cervical artery dissection or fibromuscular dysplasia. Using various tissue-specific Cre-driver mouse lines, was deleted either in endothelial cells using 2 tissue-specific Cre-driver (PDGFB [platelet-derived growth factor B]-Cre mice and Tie2 [tyrosine kinase with immunoglobulin and EGF homology domains]-Cre) and smooth muscle cells (smooth muscle actin-Cre) with a third tissue-specific Cre-driver. To test the efficacy of the deletion after cre-induction, we confirmed first, a decrease in Phactr1 transcription and Phactr1 expression in endothelial cell and smooth muscle cell isolated from Phactr1 and Phactr1 mice. Irrespective to the tissue or the duration of the deletion, mice did not spontaneously display pathological phenotype or vascular impairment: mouse survival, growth, blood pressure, large vessel morphology, or actin organization were not different in knockout mice than their comparatives littermates. Challenging vascular function and repair either by angiotensin II-induced hypertension or limb ischemia did not lead to vascular morphology or function impairment in Phactr1-deleted mice. Similarly, there were no more consequences of deletion during embryogenesis in endothelial cells. Loss of PHACTR-1 function in the cells involved in vascular physiology does not appear to induce a pathological vascular phenotype. The in vivo effect of the intronic variation described in genome-wide association studies is unlikely to involve downregulation in PHACTR-1 expression

    Arterioscler Thromb Vasc Biol

    No full text
    While endothelial dysfunction is suggested to contribute to heart failure with preserved ejection fraction pathophysiology, understanding the importance of the endothelium alone, in the pathogenesis of diastolic abnormalities has not yet been fully elucidated. Here, we investigated the consequences of specific endothelial dysfunction on cardiac function, independently of any comorbidity or risk factor (diabetes or obesity) and their potential effect on cardiomyocyte. The ubiquitine ligase , expressed in endothelial cells (ECs), was shown to destabilize tight junction. A genetic mouse model in which is overexpressed in EC (iEC-Pdzrn3) in adults was developed. EC-specific expression increased cardiac leakage of IgG and fibrinogen blood-born molecules. The induced edema demonstrated features of diastolic dysfunction, with increased end-diastolic pressure, alteration of dP/dt min, increased natriuretic peptides, in addition to limited exercise capacity, without major signs of cardiac fibrosis and inflammation. Electron microscopic images showed edema with disrupted EC-cardiomyocyte interactions. RNA sequencing analysis of gene expression in cardiac EC demonstrated a decrease in genes coding for endothelial extracellular matrix proteins, which could be related to the fragile blood vessel phenotype. Irregularly shaped capillaries with hemorrhages were found in heart sections of iEC- mice. We also found that a high-fat diet was not sufficient to provoke diastolic dysfunction; high-fat diet aggravated cardiac inflammation, associated with an altered cardiac metabolic signature in EC- mice, reminiscent of heart failure with preserved ejection fraction features. An increase of endothelial permeability is responsible for mediating diastolic dysfunction pathophysiology and for aggravating detrimental effects of a high-fat diet on cardiac inflammation and metabolism

    Therapies targeting Frizzled‐7/ÎČ‐catenin pathway prevent the development of pathological angiogenesis in an ischemic retinopathy model

    No full text
    Retinopathies remain major causes of visual impairment in diabetic patients and premature infants. Introduction of anti‐angiogenic drugs targeting vascular endothelial growth factor (VEGF) has transformed therapy for these proliferative retinopathies. However, limitations associated with anti‐VEGF medications require to unravel new pathways of vessel growth to identify potential drug targets. Here, we investigated the role of Wnt/Frizzled‐7 (Fzd7) pathway in a mouse model of oxygen‐induced retinopathy (OIR). Using transgenic mice, which enabled endothelium‐specific and time‐specific Fzd7 deletion, we demonstrated that Fzd7 controls both vaso‐obliteration and neovascular phases (NV). Deletion of Fzd7 at P12, after the ischemic phase of OIR, prevented formation of aberrant neovessels into the vitreous by suppressing proliferation of endothelial cells (EC) in tufts. Next we validated in vitro two Frd7 blocking strategies: a monoclonal antibody (mAbFzd7) against Fzd7 and a soluble Fzd7 receptor (CRD). In vivo a single intravitreal microinjection of mAbFzd7 or CRD significantly attenuated retinal neovascularization (NV) in mice with OIR. Molecular analysis revealed that Fzd7 may act through the activation of Wnt/ÎČ‐catenin and Jagged1 expression to control EC proliferation in extra‐retinal neovessels. We identified Fzd7/ÎČ‐catenin signaling as new regulator of pathological retinal NV. Fzd7 appears to be a potent pharmacological target to prevent or treat aberrant angiogenesis of ischemic retinopathies
    corecore