583 research outputs found
Vigilant Keratinocytes Trigger PAMP Signaling in Response to Streptococcal M1 Protein.
The human skin exerts many functions in order to maintain its barrier integrity and protect the host from invading microorganisms. One such pathogen is Streptococcus pyogenes, which can cause a variety of superficial skin wounds that may eventually progress into invasive deep soft tissue infections. Here we show that keratinocytes recognize soluble M1 protein, a streptococcal virulence factor, as a PAMP to release alarming inflammatory responses. We found that this interaction initiates an inflammatory intracellular signaling cascade involving the activation of mitogen-activated kinases, ERK, p38 and JNK, and the subsequent induction and mobilization of the transcription factors NF-κB and AP-1. We also determined the imprint of inflammatory mediators released, such as IL-8, GROα, MIF, EMMPRIN, IL-1α, IL-1Ra, and ST2 in response to streptococcal M1 protein. The expression of IL-8 is dependent on TLR2 activity and subsequent activation of the MAP kinases ERK and p38. Notably this signaling seems distinct for IL-8 release and it is not shared with the other inflammatory mediators. We conclude that keratinocytes participate pro-inflammatory in streptococcal pattern recognition and that expression of the chemoattractant IL-8 by keratinocytes constitutes an important protective mechanism against streptococcal M1 protein
Neutrophils from Both Susceptible and Resistant Mice Efficiently Kill Opsonized \u3cem\u3eListeria monocytogenes\u3c/em\u3e
Inbred mouse strains differ in their susceptibility to infection with the facultative intracellular bacterium Listeria monocytogenes, largely due to delayed or deficient innate immune responses. Previous antibody depletion studies suggested that neutrophils (polymorphonuclear leukocytes [PMN]) were particularly important for clearance in the liver, but the ability of PMN from susceptible and resistant mice to directly kill L. monocytogenes has not been examined. In this study, we showed that PMN infiltrated the livers of BALB/c/By/J (BALB/c) and C57BL/6 (B6) mice in similar numbers and that both cell types readily migrated toward leukotriene B4 in an in vitro chemotaxis assay. However, CFU burdens in the liver were significantly higher in BALB/c mice than in other strains, suggesting that PMN in the BALB/c liver might not be able to clear L. monocytogenes as efficiently as B6 PMN. Unprimed PMN harvested from either BALB/c or B6 bone marrow killed L. monocytogenes directly ex vivo, and pretreatment with autologous serum significantly enhanced killing efficiency for both. L. monocytogenes were internalized within 10 min and rapidly triggered intracellular production of reactive oxygen species in a dose-dependent manner. However, PMN from gp91phox-deficient mice also readily killed L. monocytogenes, which suggested that nonoxidative killing mechanisms may be sufficient for bacterial clearance. Together, these results indicate that there is not an intrinsic defect in the ability of PMN from susceptible BALB/c mice to kill L. monocytogenes and further suggest that if PMN function is impaired in BALB/c mice, it is likely due to locally produced modulating factors present in the liver during infection
Recommended from our members
Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization.
BACKGROUND: The recent West African Ebola epidemic led to accelerated efforts to test Ebola vaccine candidates. As part of the World Health Organisation-led VSV Ebola Consortium (VEBCON), we performed a phase I clinical trial investigating rVSV-ZEBOV (a recombinant vesicular stomatitis virus-vectored Ebola vaccine), which has recently demonstrated protection from Ebola virus disease (EVD) in phase III clinical trials and is currently in advanced stages of licensing. So far, correlates of immune protection are incompletely understood and the role of cell-mediated immune responses has not been comprehensively investigated to date. METHODS: We recruited 30 healthy subjects aged 18-55 into an open-label, dose-escalation phase I trial testing three doses of rVSV-ZEBOV (3×105 plaque-forming units (PFU), 3×106 PFU, 2×107 PFU) (ClinicalTrials.gov; NCT02283099). Main study objectives were safety and immunogenicity, while exploratory objectives included lymphocyte dynamics, cell-mediated immunity and cytokine networks, which were assessed using flow cytometry, ELISpot and LUMINEX assay. FINDINGS: Immunization with rVSV-ZEBOV was well tolerated without serious vaccine-related adverse events. Ebola virus-specific neutralizing antibodies were induced in nearly all individuals. Additionally, vaccinees, particularly within the highest dose cohort, generated Ebola glycoprotein (GP)-specific T cells and initiated a cascade of signaling molecules following stimulation of peripheral blood mononuclear cells with Ebola GP peptides. INTERPRETATION: In addition to a benign safety and robust humoral immunogenicity profile, subjects immunized with 2×107 PFU elicited higher cellular immune responses and stronger interlocked cytokine networks compared to lower dose groups. To our knowledge these data represent the first detailed cell-mediated immuneprofile of a clinical trial testing rVSV-ZEBOV, which is of particular interest in light of its potential upcoming licensure as the first Ebola vaccine. VEBCON trial Hamburg, Germany (NCT02283099)
Neutrophil extracellular trap formation is independent of de novo gene expression
Neutrophils are essential innate immune cells whose responses are crucial in the clearance of invading pathogens. Neutrophils can respond to infection by releasing neutrophil extracellular traps (NETs). NETs are formed of chromatin and specific granular proteins and are released after execution of a poorly characterized cell death pathway. Here, we show that NET formation induced by PMA or Candida albicans is independent of RNA polymerase II and III-mediated transcription as well as of protein synthesis. Thus, neutrophils contain all the factors required for NET formation when they emerge from the bone marrow as differentiated cells
Matrix Metalloprotease 9 Mediates Neutrophil Migration into the Airways in Response to Influenza Virus-Induced Toll-Like Receptor Signaling
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88−/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
Lipocalin 2 is protective against E. coli pneumonia
<p>Abstract</p> <p>Background</p> <p>Lipocalin 2 is a bacteriostatic protein that binds the siderophore enterobactin, an iron-chelating molecule produced by <it>Escherichia coli </it>(<it>E. coli</it>) that is required for bacterial growth. Infection of the lungs by <it>E. coli </it>is rare despite a frequent exposure to this commensal bacterium. Lipocalin 2 is an effector molecule of the innate immune system and could therefore play a role in hindering growth of <it>E. coli </it>in the lungs.</p> <p>Methods</p> <p>Lipocalin 2 knock-out and wild type mice were infected with two strains of <it>E. coli</it>. The lungs were removed 48 hours post-infection and examined for lipocalin 2 and MMP9 (a myeloid marker protein) by immunohistochemical staining and western blotting. Bacterial numbers were assessed in the lungs of the mice at 2 and 5 days after infection and mortality of the mice was monitored over a five-day period. The effect of administering ferrichrome (an iron source that cannot be bound by lipocalin 2) along with E.coli was also examined.</p> <p>Results</p> <p>Intratracheal installation of <it>E. coli </it>in mice resulted in strong induction of lipocalin 2 expression in bronchial epithelium and alveolar type II pneumocytes. Migration of myeloid cells to the site of infection also contributed to an increased lipocalin 2 level in the lungs. Significant higher bacterial numbers were observed in the lungs of lipocalin 2 knock-out mice on days 2 and 5 after infection with <it>E. coli </it>(p < 0.05). In addition, a higher number of <it>E. coli </it>was found in the spleen of surviving lipocalin 2 knock-out mice on day 5 post-infection than in the corresponding wild-type mice (p < 0.05). The protective effect against <it>E. coli </it>infection in wild type mice could be counteracted by the siderophore ferrichrome, indicating that the protective effect of lipocalin 2 depends on its ability to sequester iron.</p> <p>Conclusions</p> <p>Lipocalin 2 is important for protection of airways against infection by <it>E. coli</it>.</p
- …