25 research outputs found

    Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Get PDF
    Nucleon electromagnetic form factor data (including recent data) is fitted with models that respect the confinement and asymptotic freedom properties of QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson pole contributions and at high momentum transfer conform to the predictions of perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also include the width of the rho meson and the addition of higher mass vector meson exchanges, but do not evolve into the explicit form of PQCD at high momentum transfer. Different parameterizations of the GK model's hadronic form factors, the effect of including the width of the rho meson and the addition of the next (in mass) isospin 1 vector meson are considered. The quality of fit and the consistency of the parameters select three of the combined HP/GK type models. Projections are made to the higher momentum transfers which are relevant to electron-deuteron experiments. The projections vary little for the preferred models, removing much of the ambiguity in electron-nucleus scattering predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure, minor textual changes; email correspondence to [email protected]

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    The 3D Structure of N132D in the LMC: A Late-Stage Young Supernova Remnant

    Full text link
    We have used the Wide Field Spectrograph (WiFeS) on the 2.3m telescope at Siding Spring Observatory to map the [O III] 5007{\AA} dynamics of the young oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. From the resultant data cube, we have been able to reconstruct the full 3D structure of the system of [O III] filaments. The majority of the ejecta form a ring of ~12pc in diameter inclined at an angle of 25 degrees to the line of sight. We conclude that SNR N132D is approaching the end of the reverse shock phase before entering the fully thermalized Sedov phase of evolution. We speculate that the ring of oxygen-rich material comes from ejecta in the equatorial plane of a bipolar explosion, and that the overall shape of the SNR is strongly influenced by the pre-supernova mass loss from the progenitor star. We find tantalizing evidence of a polar jet associated with a very fast oxygen-rich knot, and clear evidence that the central star has interacted with one or more dense clouds in the surrounding ISM.Comment: Accepted for Publication in Astrophysics & Space Science, 18pp, 8 figure

    Closed-Form transformation between geodetic and ellipsoidal coordinates

    Get PDF
    We present formulas for direct closed-form transformation between geodetic coordinates(Φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution.These will be useful for those dealing with ellipsoidal representations of the Earth's gravityfield or other oblate ellipsoidal figures. The numerical stability of the transformations for nearpolarand near-equatorial regions is also considered

    Dust in Supernovae and Supernova Remnants II: Processing and survival

    Get PDF
    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations
    corecore