26 research outputs found

    Intergrain Effects in the AC Susceptibility of Polycrystalline LaFeAsO_{0.94}F_{0.06}

    Get PDF
    The AC susceptibility, chi, at zero DC magnetic field of a polycrystalline sample of LaFeAsO_{0.94}F_{0.06} (Tc ≈ 24 K) has been investigated as a function of the temperature, the amplitude of the AC magnetic field (in the range Hac = 0.003 Oe - 4 Oe) and the frequency (in the range f = 10 kHz - 100 kHz). The chi(T) curve exhibits the typical two-step transition arising from the combined response of superconducting grains and intergranular weak-coupled medium. The intergranular part of chi strongly depends on both the amplitude and the frequency of the AC driving field, from few Kelvin below Tc down to T = 4.2 K. Our results show that, in the investigated sample, the intergrain critical current is not determined by pinning of Josephson vortices but by Josephson critical current across neighboring grains

    Degassing and Cycling of Mercury at Nisyros Volcano (Greece)

    Get PDF
    Nisyros Island (Greece) is an active volcano hosting a high-enthalpy geothermal system. During June 2013, an extensive survey on Hg concentrations in different matrices (fumarolic fluids, atmosphere, soils and plants) was carried out at Lakki Plain, an intra-caldera area affected by widespread soil and fumarolic degassing. Concentrations of gaseous elemental mercury (GEM), H2S and CO2, were simultaneously measured in both the fumarolic emissions and the atmosphere around them. At the same time, 130 samples of top soils and 31 samples of plants (Cistus Creticus and Salvifolius and Erica Arborea and Manipuliflora) were collected for Hg analysis. Mercury concentrations in fumarolic gases ranged from 10,500 to 46,300 ng/m3, while Hg concentrations in the air ranged from high background values in the Lakki Plain caldera (10-36 ng/m3) up to 7100 ng/m3 in the fumarolic areas. Outside the caldera, the concentrations were relatively low (2-5 ng/m3). The positive correlation with both CO2 and H2S in air highlighted the importance of hydrothermal gases as carrier for GEM. On the other hand, soil Hg concentrations (0.023-13.7 µg/g) showed no significant correlations with CO2 and H2S in the soil gases, whereas it showed a positive correlation with total S content and an inverse one with the soil-pH, evidencing the complexity of the processes involving Hg carried by hydrothermal gases while passing through the soil. Total Hg concentrations in plant leaves (0.010-0.112 μg/g) had no direct correlation with soil Hg, with Cistus leaves containing higher values of Hg respect to Erica. Even though GEM concentrations in air within the caldera are sometimes orders of magnitude above the global background, they should not be considered dangerous to human health. Values exceeding the WHO guideline value of 1000 ng/m3 are very rare (<0.1%) and only found very close to the main fumarolic vents, where the access to tourists is prohibited.PublishedID 47835146A. Geochimica per l'ambiente e geologia medicaJCR Journa

    Direct sunlight facility for testing and research in HCPV

    Get PDF
    A facility for testing different components for HCPV application has been developed in the framework of “Fotovoltaico ad Alta Efficienza” (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules

    High-Efficiency Multi-Junction Photovoltaic Cells in School Physics Laboratory

    No full text
    Energy consumption in the world is increasing more and more due to the huge energy request coming from emerging countries such as China, India, etc. To face the challenge of sustainability, a solution may be the use of solar energy, since it is the most abundant renewable energy source on Earth. The electromagnetic energy coming from the Sun can be converted into usable energy (electricity) by solar cells, whose conversion efficiency is continuously increasing due to scientific and technological progress. The proposed activity is thought to be carried out with secondary as well as high school students to allow teachers to discuss sustainability issues, and to provide students with an introductory view into modern physics aspects (quantization of energy levels), quantum mechanics (semi-conductor band energies), and radiation-matter interaction. Furthermore, cutting-edge research in physics can reach school students, increasing their interest in scientific studies

    Microwave Response of Ceramic MgB2 Samples

    No full text
    The microwave response of ceramic MgB2 has been investigated as a function of temperature and external magnetic field by two different techniques: microwave surface impedance and second-harmonic emission measurements. The measurements of the surface resistance have shown that microwave losses in MgB2 are strongly affected by the magnetic field in the whole range of temperatures below Tc, even for relatively low field values. The results have been accounted for in the framework of the Coffey and Clem model hypothesizing that in different temperature ranges the microwave current induces fluxons to move in different regimes. In particular, the results at temperatures close to Tc have been quantitatively justified by assuming that fluxons move in the flux-flow regime and taking into account the anisotropy of the upper critical field. At low temperatures, the field dependence of the surface resistance follows the law expected in the pinning limit; however, an unusually enhanced field variation has been detected, which could be due to the peculiar fluxon structure of MgB2, related to the presence of the two gaps. The measurements of the second-harmonic signals have highlighted several mechanisms responsible for the nonlinear response. At low magnetic fields and low temperatures, the nonlinear response is due to processes involving weak links. At temperatures close to Tc, a further contribution to the harmonic emission is present; it arises from the modulation of the order parameter by the microwave field and gives rise to a peak in the temperature dependence of the harmonic-signal intensity
    corecore