56 research outputs found

    On the number of simple arrangements of five double pseudolines

    Get PDF
    We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.Comment: 24 pages, 16 figures, 6 table

    LR characterization of chirotopes of finite planar families of pairwise disjoint convex bodies

    Full text link
    We extend the classical LR characterization of chirotopes of finite planar families of points to chirotopes of finite planar families of pairwise disjoint convex bodies: a map \c{hi} on the set of 3-subsets of a finite set I is a chirotope of finite planar families of pairwise disjoint convex bodies if and only if for every 3-, 4-, and 5-subset J of I the restriction of \c{hi} to the set of 3-subsets of J is a chirotope of finite planar families of pairwise disjoint convex bodies. Our main tool is the polarity map, i.e., the map that assigns to a convex body the set of lines missing its interior, from which we derive the key notion of arrangements of double pseudolines, introduced for the first time in this paper.Comment: 100 pages, 73 figures; accepted manuscript versio

    Edge-Graph Diameter Bounds for Convex Polytopes with Few Facets

    Full text link
    We show that the edge graph of a 6-dimensional polytope with 12 facets has diameter at most 6, thus verifying the d-step conjecture of Klee and Walkup in the case of d=6. This implies that for all pairs (d,n) with n-d \leq 6 the diameter of the edge graph of a d-polytope with n facets is bounded by 6, which proves the Hirsch conjecture for all n-d \leq 6. We show this result by showing this bound for a more general structure -- so-called matroid polytopes -- by reduction to a small number of satisfiability problems.Comment: 9 pages; update shortcut constraint discussio

    Geometric Configurations, Regular Subalgebras of E10 and M-Theory Cosmology

    Get PDF
    We re-examine previously found cosmological solutions to eleven-dimensional supergravity in the light of the E_{10}-approach to M-theory. We focus on the solutions with non zero electric field determined by geometric configurations (n_m, g_3), n\leq 10. We show that these solutions are associated with rank gg regular subalgebras of E_{10}, the Dynkin diagrams of which are the (line) incidence diagrams of the geometric configurations. Our analysis provides as a byproduct an interesting class of rank-10 Coxeter subgroups of the Weyl group of E_{10}.Comment: 48 pages, 27 figures, 5 tables, references added, typos correcte

    Oriented Matroids -- Combinatorial Structures Underlying Loop Quantum Gravity

    Full text link
    We analyze combinatorial structures which play a central role in determining spectral properties of the volume operator in loop quantum gravity (LQG). These structures encode geometrical information of the embedding of arbitrary valence vertices of a graph in 3-dimensional Riemannian space, and can be represented by sign strings containing relative orientations of embedded edges. We demonstrate that these signature factors are a special representation of the general mathematical concept of an oriented matroid. Moreover, we show that oriented matroids can also be used to describe the topology (connectedness) of directed graphs. Hence the mathematical methods developed for oriented matroids can be applied to the difficult combinatorics of embedded graphs underlying the construction of LQG. As a first application we revisit the analysis of [4-5], and find that enumeration of all possible sign configurations used there is equivalent to enumerating all realizable oriented matroids of rank 3, and thus can be greatly simplified. We find that for 7-valent vertices having no coplanar triples of edge tangents, the smallest non-zero eigenvalue of the volume spectrum does not grow as one increases the maximum spin \jmax at the vertex, for any orientation of the edge tangents. This indicates that, in contrast to the area operator, considering large \jmax does not necessarily imply large volume eigenvalues. In addition we give an outlook to possible starting points for rewriting the combinatorics of LQG in terms of oriented matroids.Comment: 43 pages, 26 figures, LaTeX. Version published in CQG. Typos corrected, presentation slightly extende

    Computing pseudotriangulations via branched coverings

    Full text link
    We describe an efficient algorithm to compute a pseudotriangulation of a finite planar family of pairwise disjoint convex bodies presented by its chirotope. The design of the algorithm relies on a deepening of the theory of visibility complexes and on the extension of that theory to the setting of branched coverings. The problem of computing a pseudotriangulation that contains a given set of bitangent line segments is also examined.Comment: 66 pages, 39 figure

    Subword complexes, cluster complexes, and generalized multi-associahedra

    Full text link
    In this paper, we use subword complexes to provide a uniform approach to finite type cluster complexes and multi-associahedra. We introduce, for any finite Coxeter group and any nonnegative integer k, a spherical subword complex called multi-cluster complex. For k=1, we show that this subword complex is isomorphic to the cluster complex of the given type. We show that multi-cluster complexes of types A and B coincide with known simplicial complexes, namely with the simplicial complexes of multi-triangulations and centrally symmetric multi-triangulations respectively. Furthermore, we show that the multi-cluster complex is universal in the sense that every spherical subword complex can be realized as a link of a face of the multi-cluster complex.Comment: 26 pages, 3 Tables, 2 Figures; final versio

    Poor Man’s Genericity for Java

    Full text link
    corecore