116 research outputs found
Direct Injection Liquid Chromatography High-Resolution Mass Spectrometry for Determination of Primary and Secondary Terrestrial and Marine Biomarkers in Ice Cores
Many atmospheric organic compounds are long-lived enough to be transported from their sources to polar regions and high mountain environments where they can be trapped in ice archives. While inorganic components in ice archives have been studied extensively to identify past climate changes, organic compounds have rarely been used to assess paleo-environmental changes, mainly due to the lack of suitable analytical methods. This study presents a new method of direct injection HPLC-MS analysis, without the need of pre-concentrating the melted ice, for the determination of a series of novel biomarkers in ice-core samples indicative of primary and secondary terrestrial and marine organic aerosol sources. Eliminating a preconcentration step reduces contamination potential and decreases the required sample volume thus allowing a higher time resolution in the archives. The method is characterised by limits of detections (LODs) in the range of 0.01-15 ppb, depending on the analyte, and accuracy evaluated through an interlaboratory comparison. We find that many components in secondary organic aerosols (SOA) are clearly detectable at concentrations comparable to those previously observed in replicate preconcentrated ice samples from the Belukha glacier, Russian Altai Mountains. Some compounds with low recoveries in preconcentration steps are now detectable in samples with this new direct injection method significantly increasing the range of environmental processes and sources that become accessible for paleo-climate studies
Direct target and non-target analysis of urban aerosol sample extracts using atmospheric pressure photoionisation high-resolution mass spectrometry
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous atmospheric pollutants of high concern for public health. In the atmosphere they undergo oxidation, mainly through reactions with center dot OH and NOx to produce nitro- and oxygenated (oxy-) derivatives. In this study, we developed a new method for the detection of particle-bound PAHs, nitro-PAHs and oxy-PAHs using direct infusion into an atmospheric pressure photoionisation high-resolution mass spectrometer (APPI-HRMS). Method optimisation was done by testing different source temperatures, gas flow rates, mobile phases and dopants. Samples were extracted with methanol, concentrated by evaporation and directly infused in the APPI source after adding toluene as dopant. Acquisition was performed in both polarity modes. The method was applied to target analysis of seasonal PM2.5 samples from an urban background site in Padua (Italy), in the Po Valley, in which a series of PAHs, nitro- and oxy-PAHs were detected. APPI-HRMS was then used for non-target analysis of seasonal PM2.5 samples and results compared with nano-electrospray ionisation (nanoESI) HRMS. The results showed that, when samples were characterised by highly oxidised organic compounds, including S-containing compounds, like in summer samples, APPI did not bring any additional information with respect to nanoESI in negative polarity (nanoESI(-)). Conversely, for winter samples, APPI(-) could detect a series of aromatic and poly-aromatic compounds, mainly oxidised and nitrogenated aromatics, that were not otherwise detected with nanoESI. (C) 2019 Elsevier Ltd. All rights reserved
On the Fragmentation of Ni(II) β-Diketonate-Diamine Complexes as Molecular Precursors for NiO Films: A Theoretical and Experimental Investigation
NiO-based nanomaterials have attracted considerable interest for different applications, which have stimulated the implementation of various synthetic approaches aimed at modulating their chemico-physical properties. In this regard, their bottom-up preparation starting from suitable precursors plays an important role, although a molecular-level insight into their reactivity remains an open issue to be properly tackled. In the present study, we focused on the fragmentation of Ni(II) diketonate-diamine adducts, of interest as vapor-phase precursors for Ni(II) oxide systems, by combining electrospray ionization mass spectrometry (ESI-MS) with multiple collisional experiments (ESI-MSn) and theoretical calculations. The outcomes of this investigation revealed common features in the fragmentation pattern of the target compounds: (i) in the first fragmentation, the three complexes yield analogous base-peak cations by losing a negatively charged diketonate moiety; in these cations, Ni-O and Ni-N interactions are stronger and the Ni positive charge is lower than in the parent neutral complexes; (ii) the tendency of ligand electronic charge to migrate towards Ni further increases in the subsequent fragmentation, leading to the formation of a tetracoordinated Ni environment featuring an interesting cation-pi intramolecular interaction
DNA barcoding of Ceramiales (Rhodophyta) around the Maltese islands reveals hidden biodiversity in the central Mediterranean
The genetic biodiversity of Mediterranean macroalgae is
generally understudied, a fact which is especially important
in the case of morphologically cryptic taxa. As a result, it is
often challenging to compare DNA barcodes from
Mediterranean samples to references in online databases
since, very often, no close hits are available. At a regional
scale, of around 1124 records of algae in the Mediterranean
Sea, only 114 species have been barcoded.peer-reviewe
Synthesis and biological studies on dinuclear gold(I) complexes with Di-(N-Heterocyclic Carbene) ligands functionalized with carbohydrates
The design of novel metal complexes with N-heterocyclic carbene (NHC) ligands that display biological activity is an active research field in organometallic chemistry. One of the possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety. Two novel Au(I)-Au(I) dinuclear complexes were synthesized; they present a neutral structure with one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate functionality. With the symmetric diNHC ligand, the dicationic dinuclear complex bearing two bridging diNHC ligands was also synthesized. The study was completed by analyzing the antiproliferative properties of these complexes, which were compared to the activity displayed by similar mononuclear Au(I) complexes and by the analogous bimetallic Au(I)-Au(I) complex not functionalized with carbohydrates
Novel correlations between spectroscopic and morphological properties of activated carbons from waste coffee grounds
Massive quantities of spent coffee grounds (SCGs) are generated by users around the world. Different processes have been proposed for SCG valorization, including pyrolytic processes to achieve carbonaceous materials. Here, we report the preparation of activated carbons through pyrolytic processes carried out under different experimental conditions and in the presence of various porosity activators. Textural and chemical characterization of the obtained carbons have been achieved through Brunauer–Emmett–Teller (BET), ESEM,13C solid state NMR, XPS, XRD, thermogravimetric and spectroscopic determinations. The aim of the paper is to relate these data to the preparation method, evaluating the correlation between the spectroscopic data and the physical and textural properties, also in comparison with the corresponding data obtained for three commercial activated carbons used in industrial adsorption processes. Some correlations have been observed between the Raman and XPS data
Mass spectrometry-based “omics” technologies for the study of gestational diabetes and the discovery of new biomarkers
Gestational diabetes (GDM) is one of the most common complications occurring during pregnancy. Diagnosis is performed by oral glucose tolerance test, but harmonized testing methods and thresholds are still lacking worldwide. Short-term and long-term effects include obesity, type 2 diabetes, and increased risk of cardiovascular disease. The identification and validation of sensitidve, selective, and robust biomarkers for early diagnosis during the first trimester of pregnancy are required, as well as for the prediction of possible adverse outcomes after birth. Mass spectrometry (MS)-based omics technologies are nowadays the method of choice to characterize various pathologies at a molecular level. Proteomics and metabolomics of GDM were widely investigated in the last 10 years, and various proteins and metabolites were proposed as possible biomarkers. Metallomics of GDM was also reported, but studies are limited in number. The present review focuses on the description of the different analytical methods and MS-based instrumental platforms applied to GDM-related omics studies. Preparation procedures for various biological specimens are described and results are briefly summarized. Generally, only preliminary findings are reported by current studies and further efforts are required to determine definitive GDM biomarkers
Quality issues in Water Sampling, Sample Pre-treatment and Monitoring
One of the first books to cover transformation products, rather than primary compounds, Transformation Products of Emerging Contaminants in the Environment gathers, specifies, synthesizes, and advances existing knowledge of the most important transformation product (TPs) of the main groups of emerging contaminants with potential concern to human health and the environment. This two-volume set for researchers and professionals covers the sources of TPs of emerging contaminants and their environmental behavior, their occurrence and effects on urban and marine environments, risk assessment and management, and technologies and strategies available for control
- …