2,606 research outputs found

    Universality in Random Walk Models with Birth and Death

    Get PDF
    Models of random walks are considered in which walkers are born at one location and die at all other locations with uniform death rate. Steady-state distributions of random walkers exhibit dimensionally dependent critical behavior as a function of the birth rate. Exact analytical results for a hyperspherical lattice yield a second-order phase transition with a nontrivial critical exponent for all positive dimensions D≠2, 4D\neq 2,~4. Numerical studies of hypercubic and fractal lattices indicate that these exact results are universal. Implications for the adsorption transition of polymers at curved interfaces are discussed.Comment: 11 pages, revtex, 2 postscript figure

    Low-Temperature Excitations of Dilute Lattice Spin Glasses

    Full text link
    A new approach to exploring low-temperature excitations in finite-dimensional lattice spin glasses is proposed. By focusing on bond-diluted lattices just above the percolation threshold, large system sizes LL can be obtained which lead to enhanced scaling regimes and more accurate exponents. Furthermore, this method in principle remains practical for any dimension, yielding exponents that so far have been elusive. This approach is demonstrated by determining the stiffness exponent for dimensions d=3d=3, d=6d=6 (the upper critical dimension), and d=7d=7. Key is the application of an exact reduction algorithm, which eliminates a large fraction of spins, so that the reduced lattices never exceed ∌103\sim10^3 variables for sizes as large as L=30 in d=3d=3, L=9 in d=6d=6, or L=8 in d=7d=7. Finite size scaling analysis gives y3=0.24(1)y_3=0.24(1) for d=3d=3, significantly improving on previous work. The results for d=6d=6 and d=7d=7, y6=1.1(1)y_6=1.1(1) and y7=1.24(5)y_7=1.24(5), are entirely new and are compared with mean-field predictions made for d>=6.Comment: 7 pages, LaTex, 7 ps-figures included, added result for stiffness in d=7, as to appear in Europhysics Letters (see http://www.physics.emory.edu/faculty/boettcher/ for related information

    d_c=4 is the upper critical dimension for the Bak-Sneppen model

    Full text link
    Numerical results are presented indicating d_c=4 as the upper critical dimension for the Bak-Sneppen evolution model. This finding agrees with previous theoretical arguments, but contradicts a recent Letter [Phys. Rev. Lett. 80, 5746-5749 (1998)] that placed d_c as high as d=8. In particular, we find that avalanches are compact for all dimensions d<=4, and are fractal for d>4. Under those conditions, scaling arguments predict a d_c=4, where hyperscaling relations hold for d<=4. Other properties of avalanches, studied for 1<=d<=6, corroborate this result. To this end, an improved numerical algorithm is presented that is based on the equivalent branching process.Comment: 4 pages, RevTex4, as to appear in Phys. Rev. Lett., related papers available at http://userwww.service.emory.edu/~sboettc

    Extremal Optimization for Graph Partitioning

    Full text link
    Extremal optimization is a new general-purpose method for approximating solutions to hard optimization problems. We study the method in detail by way of the NP-hard graph partitioning problem. We discuss the scaling behavior of extremal optimization, focusing on the convergence of the average run as a function of runtime and system size. The method has a single free parameter, which we determine numerically and justify using a simple argument. Our numerical results demonstrate that on random graphs, extremal optimization maintains consistent accuracy for increasing system sizes, with an approximation error decreasing over runtime roughly as a power law t^(-0.4). On geometrically structured graphs, the scaling of results from the average run suggests that these are far from optimal, with large fluctuations between individual trials. But when only the best runs are considered, results consistent with theoretical arguments are recovered.Comment: 34 pages, RevTex4, 1 table and 20 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    SALT Spectropolarimetry and Self-Consistent SED and Polarization Modeling of Blazars

    Full text link
    We report on recent results from a target-of-opportunity program to obtain spectropolarimetry observations with the Southern African Large Telescope (SALT) on flaring gamma-ray blazars. SALT spectropolarimetry and contemporaneous multi-wavelength spectral energy distribution (SED) data are being modelled self-consistently with a leptonic single-zone model. Such modeling provides an accurate estimate of the degree of order of the magnetic field in the emission region and the thermal contributions (from the host galaxy and the accretion disk) to the SED, thus putting strong constraints on the physical parameters of the gamma-ray emitting region. For the specific case of the Îł\gamma-ray blazar 4C+01.02, we demonstrate that the combined SED and spectropolarimetry modeling constrains the mass of the central black hole in this blazar to MBH∌109 M⊙M_{\rm BH} \sim 10^9 \, M_{\odot}.Comment: Submitted to Galaxies - Proceedings of "Polarized Emission from Astrophysical Jets", Ierapetra, Crete, June 12 - 16, 201

    Continuous extremal optimization for Lennard-Jones Clusters

    Full text link
    In this paper, we explore a general-purpose heuristic algorithm for finding high-quality solutions to continuous optimization problems. The method, called continuous extremal optimization(CEO), can be considered as an extension of extremal optimization(EO) and is consisted of two components, one is with responsibility for global searching and the other is with responsibility for local searching. With only one adjustable parameter, the CEO's performance proves competitive with more elaborate stochastic optimization procedures. We demonstrate it on a well known continuous optimization problem: the Lennerd-Jones clusters optimization problem.Comment: 5 pages and 3 figure

    Current definitions of “transdiagnostic” in treatment development: A search for consensus

    Full text link
    Research in psychopathology has identified psychological processes that are relevant across a range of Diagnostic and Statistical Manual (DSM) mental disorders, and these efforts have begun to produce treatment principles and protocols that can be applied transdiagnostically. However, review of recent work suggests that there has been great variability in conceptions of the term “transdiagnostic” in the treatment development literature. We believe that there is value in arriving at a common understanding of the term “transdiagnostic.” The purpose of the current manuscript is to outline three principal ways in which the term “transdiagnostic” is currently used, to delineate treatment approaches that fall into these three categories, and to consider potential advantages and disadvantages of each approachFirst author draf

    Reduction of Dilute Ising Spin Glasses

    Full text link
    The recently proposed reduction method for diluted spin glasses is investigated in depth. In particular, the Edwards-Anderson model with \pm J and Gaussian bond disorder on hyper-cubic lattices in d=2, 3, and 4 is studied for a range of bond dilutions. The results demonstrate the effectiveness of using bond dilution to elucidate low-temperature properties of Ising spin glasses, and provide a starting point to enhance the methods used in reduction. Based on that, a greedy heuristic call ``Dominant Bond Reduction'' is introduced and explored.Comment: 10 pages, revtex, final version, find related material at http://www.physics.emory.edu/faculty/boettcher

    Hysteretic Optimization For Spin Glasses

    Full text link
    The recently proposed Hysteretic Optimization (HO) procedure is applied to the 1D Ising spin chain with long range interactions. To study its effectiveness, the quality of ground state energies found as a function of the distance dependence exponent, σ\sigma, is assessed. It is found that the transition from an infinite-range to a long-range interaction at σ=0.5\sigma=0.5 is accompanied by a sharp decrease in the performance . The transition is signaled by a change in the scaling behavior of the average avalanche size observed during the hysteresis process. This indicates that HO requires the system to be infinite-range, with a high degree of interconnectivity between variables leading to large avalanches, in order to function properly. An analysis of the way auto-correlations evolve during the optimization procedure confirm that the search of phase space is less efficient, with the system becoming effectively stuck in suboptimal configurations much earlier. These observations explain the poor performance that HO obtained for the Edwards-Anderson spin glass on finite-dimensional lattices, and suggest that its usefulness might be limited in many combinatorial optimization problems.Comment: 6 pages, 9 figures. To appear in JSTAT. Author website: http://www.bgoncalves.co
    • 

    corecore