3,333 research outputs found

    Evidences for two Gamma-Ray Burst afterglow emission regimes

    Get PDF
    We applied cosmological and absorption corrections to the X-ray and optical afterglow fluxes of a sample of Gamma-Ray Burst sources of known distance. We find a good correlation in X-rays and that the GRBs in our sample form two well defined classes. We tentatively interpret them as radiative and adiabatic afterglow behaviours in the framework of the fireball model for GRBs. We do not observe this correlation at optical wavelengths. This discrepancy with the model may be due to the absorption in the source vicinity.Comment: 4 pages, 2 figures, letter to be published in Astronomy and Astrophysic

    Simultaneous detection rates of binary neutron star systems in advanced Virgo/LIGO and GRB detectors

    Full text link
    The coalescence of two compact objects is a key target for the new gravitational wave observatories such as Advanced-Virgo (AdV), Advanced-LIGO (aLIGO) and KAGRA. This phenomenon can lead to the simultaneous detection of electromagnetic waves in the form of short GRBs (sGRBs) and gravitational wave transients. This will potentially allow for the first time access to the fireball and the central engine properties. We present an estimation of the detection rate of such events, seen both by a Swift-like satellite and AdV/ALIGO. This rate is derived only from the observations of sGRBs. We show that this rate, if not very high, predicts a few triggers during the whole life time of Advanced LIGO-Virgo. We discuss how to increase it using some dedicated observational strategies. We apply our results to other missions such as the SVOM French-Chinese satellite project or LOFT.Comment: 7 pages, 1 figure, 7th Huntsville Gamma-Ray Burst Symposium, GRB 2013: paper 18 in eConf Proceedings C130414

    Are Ultra-long Gamma-Ray Bursts different?

    Full text link
    The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of sources, the so called {\em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {\em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.Comment: 6 pages, submitted to ApJ, minor typo

    Simultaneous event detection rates by electromagnetic and gravitational wave detectors in the Advanced Era of LIGO and Virgo

    Full text link
    We present several estimates of the rate of simultaneous detection of the merging of a binary system of neutron stars in the electromagnetic and the gravitational wave domains, assuming that they produce short GRBs. We have based our estimations on a carefully selected sample of short gamma-ray bursts, corrected from redshift effects. The results presented in this paper are based on actual observation only. In the electromagnetic spectrum, we considered observations by current (Swift and Fermi}) and future (LOFT and SVOM) missions. In the gravitational wave domain, we consider detections by the Advanced Virgo instrument alone and the network of both Advanced LIGO and Advanced Virgo. We discuss on the possible biases present in our sample, and how to fix them. For present missions, assuming a detection in the following years, we find that we should observe simultaneously between 0.11 and 4.2 gravitational wave events per year with Swift} and Fermi} respectively. For future projects (LOFT and SVOM) we can expect less than one common detection per year. We check the consistency of our results with several previously published rate of detection of gravitational waves.Comment: 7 pages, accepted for publication in MNRAS, with note added in proof correcting the rates for Fermi/SVOM experiment. Added tables 5 and 6 that are corrected and replace tables 2 and

    The solar flare and cosmic gamma-ray burst experiment aboard the Ulysses spacecraft

    Get PDF
    The HUS-Ulysses team has prepared an instrument for the Ulysses spacecraft consisting of 2 Csi detectors and 2 Si surface barrier detectors for measuring x rays in the range 5 to 200 keV with up to 8 ms time resolution. The prime objectives of the experiment are the study of solar flares and cosmic gamma-ray bursts. The Ulysses mission will leave the ecliptic during the forthcoming solar maximum. The total time above ecliptic latitudes + or - 70 degrees is expected to be 230 days. The solar data can be used in conjunction with other experiments to measure the directivity of the emission and for correlative studies

    The detection efficiency of on-axis short gamma ray burst optical afterglows triggered by aLIGO/Virgo

    Full text link
    Assuming neutron star (NS) or neutron star/stellar-mass black hole (BH) mergers as progenitors of the short gamma ray bursts, we derive and demonstrate a simple analysis tool for modelling the efficiency of recovering on-axis optical afterglows triggered by a candidate gravitational wave event detected by the Advanced LIGO and Virgo network. The coincident detection efficiency has been evaluated for different classes of operating telescopes using observations of gamma ray bursts. We show how the efficiency depends on the luminosity distribution of the optical afterglows, the telescope features, and the sky localisation of gravitational wave triggers. We estimate a plausible optical afterglow and gravitational wave coincidence rate of 1 yr−1^{-1} (0.1 yr−1^{-1}) for NS-NS (NS-BH), and how this rate is scaled down in detection efficiency by the time it takes to image the gravitational wave sky localization and the limiting magnitude of the telescopes. For NS-NS (NS-BH) we find maximum detection efficiencies of >80>80% when the total imaging time is less than 200 min (80 min) and the limiting magnitude fainter than 20 (21). We show that relatively small telescopes (m<18)(m<18) can achieve similar detection efficiencies to meter class facilities (m<20)(m<20) with similar fields of view, only if the less sensitive instruments can respond to the trigger and image the field within 10-15 min. The inclusion of LIGO India into the gravitational wave observatory network will significantly reduce imaging time for telescopes with limiting magnitudes ∌20\sim20 but with modest fields of view. An optimal coincidence search requires a global network of sensitive and fast response wide field instruments that could effectively image relatively large gravitational-wave sky localisations and produce transient candidates for further photometric and spectroscopic follow-up.Comment: 6 pages, 2 figures, version 2, reference added typo correction, Accepted by MNRA

    Autonomic Parameter Tuning of Anomaly-Based IDSs: an SSH Case Study

    Get PDF
    Anomaly-based intrusion detection systems classify network traffic instances by comparing them with a model of the normal network behavior. To be effective, such systems are expected to precisely detect intrusions (high true positive rate) while limiting the number of false alarms (low false positive rate). However, there exists a natural trade-off between detecting all anomalies (at the expense of raising alarms too often), and missing anomalies (but not issuing any false alarms). The parameters of a detection system play a central role in this trade-off, since they determine how responsive the system is to an intrusion attempt. Despite the importance of properly tuning the system parameters, the literature has put little emphasis on the topic, and the task of adjusting such parameters is usually left to the expertise of the system manager or expert IT personnel. In this paper, we present an autonomic approach for tuning the parameters of anomaly-based intrusion detection systems in case of SSH traffic. We propose a procedure that aims to automatically tune the system parameters and, by doing so, to optimize the system performance. We validate our approach by testing it on a flow-based probabilistic detection system for the detection of SSH attacks

    Universality of Sparse d>2d>2 Conformal Field Theory at Large NN

    Get PDF
    We derive necessary and sufficient conditions for large NN conformal field theories to have a universal free energy and an extended range of validity of the higher-dimensional Cardy formula. These constraints are much tighter than in two dimensions and must be satisfied by any conformal field theory dual to Einstein gravity. We construct and analyze symmetric product orbifold theories on Td\mathbb{T}^d and show that they only realize the necessary phase structure and extended range of validity if the seed theory is assumed to have a universal vacuum energy.Comment: 32 pages + appendice
    • 

    corecore