5 research outputs found

    Assessing mechanical integrity of spinal fusion by in situ endochondral osteoinduction in the murine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Historically, radiographs, micro-computed tomography (micro-CT) exams, palpation and histology have been used to assess fusions in a mouse spine. The objective of this study was to develop a faster, cheaper, reproducible test to directly quantify the mechanical integrity of spinal fusions in mice.</p> <p>Methods</p> <p>Fusions were induced in ten mice spine using a previously described technique of in situ endochondral ossification, harvested with soft tissue, and cast in radiolucent alginate material for handling. Using a validated software package and a customized mechanical apparatus that flexed and extended the spinal column, the amount of intervertebral motion between adjacent vertebral discs was determined with static flexed and extended lateral spine radiographs. Micro-CT images of the same were also blindly reviewed for fusion.</p> <p>Results</p> <p>Mean intervertebral motion between control, non-fused, spinal vertebral discs was 6.1 ± 0.2° during spine flexion/extension. In fusion samples, adjacent vertebrae with less than 3.5° intervertebral motion had fusions documented by micro-CT inspection.</p> <p>Conclusions</p> <p>Measuring the amount of intervertebral rotation between vertebrae during spine flexion/extension is a relatively simple, cheap (<$100), clinically relevant, and fast test for assessing the mechanical success of spinal fusion in mice that compared favorably to the standard, micro-CT.</p

    Bone Morphogenic Proteins: Applications in Spinal Surgery

    No full text
    The prospect of predictable and reliable oseteogenesis without the need for secondary bone grafting to treat a wide spectrum of spinal disorders is tremendously appealing. Recombinant human bone morphogenic proteins (rhBMP) have been the subject of extensive basic science, animal, and clinical research as a potential therapeutic modality to promote bony fusion. Animal studies and prospective, randomized clinical trials have demonstrated the efficacy of rhBMPs as an adjunct or substitute to autogenous bone graft in the specific treatment of certain spinal conditions. The future role of rhBMPs in spinal surgery applications remains to be determined and will be dependent upon future investigations evaluating 1) the efficacy in a variety of spinal conditions and environments, 2) the optimal dose and delivery system, 3) the long-term safety profile (immunogenicity, antibody formation), and 4) the cost effectiveness of these therapeutic growth factors
    corecore