40 research outputs found
Extending basic principles of measurement models to the design and validation of Patient Reported Outcomes
A recently published article by the Scientific Advisory Committee of the Medical Outcomes Trust presents guidelines for selecting and evaluating health status and health-related quality of life measures used in health outcomes research. In their article, they propose a number of validation and performance criteria with which to evaluate such self-report measures. We provide an alternate, yet complementary, perspective by extending the types of measurement models which are available to the instrument designer. During psychometric development or selection of a Patient Reported Outcome measure it is necessary to determine which, of the five types of measurement models, the measure is based on; 1) a Multiple Effect Indicator model, 2) a Multiple Cause Indicator model, 3) a Single Item Effect Indicator model, 4) a Single Item Cause Indicator model, or 5) a Mixed Multiple Indicator model. Specification of the measurement model has a major influence on decisions about item and scale design, the appropriate application of statistical validation methods, and the suitability of the resulting measure for a particular use in clinical and population-based outcomes research activities
Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source
The occurrence of anaerobic oxidation of methane (AOM) and trace methane oxidation (TMO) was investigated in a freshwater natural gas source. Sediment samples were taken and analyzed for potential electron acceptors coupled to AOM. Long-term incubations with 13C-labeled CH4 (13CH4) and different electron acceptors showed that both AOM and TMO occurred. In most conditions, 13C-labeled CO2 (13CO2) simultaneously increased with methane formation, which is typical for TMO. In the presence of nitrate, neither methane formation nor methane oxidation occurred. Net AOM was measured only with sulfate as electron acceptor. Here, sulfide production occurred simultaneously with 13CO2 production and no methanogenesis occurred, excluding TMO as a possible source for 13CO2 production from 13CH4. Archaeal 16S rRNA gene analysis showed the highest presence of ANME-2a/b (ANaerobic MEthane oxidizing archaea) and AAA (AOM Associated Archaea) sequences in the incubations with methane and sulfate as compared with only methane addition. Higher abundance of ANME-2a/b in incubations with methane and sulfate as compared with only sulfate addition was shown by qPCR analysis. Bacterial 16S rRNA gene analysis showed the presence of sulfate-reducing bacteria belonging to SEEP-SRB1. This is the first report that explicitly shows that AOM is associated with sulfate reduction in an enrichment culture of ANME-2a/b and AAA methanotrophs and SEEP-SRB1 sulfate reducers from a low-saline environment.We thank Douwe Bartstra (Vereniging tot Behoud van de Gasbronnen in Noord-Holland, The Netherlands), Carla Frijters (Paques BV, The Netherlands) and Teun Veuskens (Laboratory of Microbiology, WUR, The Netherlands) for sampling; Martin Meirink (Hoogheemraadschap Hollands Noorderkwartier, The Netherlands) for physicochemical data; Freek van Sambeek for providing Figure 1; Lennart Kleinjans (Laboratory of Microbiology, WUR, The Netherlands) for help with pyrosequencing analysis, Irene Sánchez-Andrea (Laboratory of Microbiology, WUR, The Netherlands) for proof-reading and Katharina Ettwig (Department of Microbiology, Radboud University Nijmegen, The Netherlands) for providing M. oxyfera DNA. We want to thank all anonymous reviewers for valuable contributions. This research is supported by the Dutch Technology Foundation STW (project 10711), which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Research of AJMS is supported by ERC grant (project 323009) and the Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO)
Commitment of cultural minorities in organizations:Effects of leadership and pressure to conform
PURPOSE: In this study, we investigated the commitment of cultural minorities and majorities in organizations. We examined how contextual factors, such as pressure to conform and leadership styles, affect the commitment of minority and majority members. DESIGN/METHODOLOGY/APPROACH: A field study was conducted on 107 employees in a large multinational corporation. FINDINGS: We hypothesize and found that cultural minorities felt more committed to the organization than majority members, thereby challenging the existing theoretical view that cultural minorities will feel less committed. We also found that organizational pressure to conform and effective leadership increased the commitment of minorities. IMPLICATIONS: Our findings indicate that organizational leaders and researchers should not only focus on increasing and maintaining the commitment of minority members, but should also consider how majority members react to cultural socialization and integration processes. The commitment of minority members can be further enhanced by effective leadership. ORIGINALITY/VALUE: In this study, we challenge the existing theoretical view based on similarity attraction theory and relational demography theory, that cultural minorities would feel less committed to the organization. Past research has mainly focused on minority groups, thereby ignoring the reaction of the majority to socialization processes. In this study, we show that cultural minorities can be more committed than majority members in organizations. Therefore, the perceptions of cultural majority members of socialization processes should also be considered in research on cultural diversity and acculturation
Modelling mammalian energetics: the heterothermy problem
Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential responses of mammals to changing climates. Many models that seek to explain the effects of environmental temperatures on mammalian energetics and survival assume a constant body temperature. However, despite generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and happen in response to immediate changes in resource abundance or temperature. In this review we provide an overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models