14 research outputs found

    Effects of an irregular bedtime schedule on sleep quality, daytime sleepiness, and fatigue among university students in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An irregular bedtime schedule is a prevalent problem in young adults, and could be a factor detrimentally affecting sleep quality. The goal of the present study was to explore the association between an irregular bedtime schedule and sleep quality, daytime sleepiness, and fatigue among undergraduate students in Taiwan.</p> <p>Methods</p> <p>A total of 160 students underwent a semi-structured interview and completed a survey comprising 4 parts: Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and a rating of irregular bedtime frequency. Participants were grouped into 3 groups in terms of irregular bedtime frequency: low, intermediate, or high according to their 2-week sleep log. To screen for psychological disorders or distress that may have affected responses on the sleep assessment measures, the Chinese health questionnaire-12 (CHQ-12) was also administered.</p> <p>Results</p> <p>We found an increase in bedtime schedule irregularity to be significantly associated with a decrease in average sleep time per day (Spearman r = -0.22, p = 0.05). Multivariate regression analysis revealed that irregular bedtime frequency and average sleep time per day were correlated with PSQI scores, but not with ESS or FSS scores. A significant positive correlation between irregular bedtime frequency and PSQI scores was evident in the intermediate (partial r = 0.18, p = 0.02) and high (partial r = 0.15, p = 0.05) frequency groups as compared to low frequency group.</p> <p>Conclusion</p> <p>The results of our study suggest a high prevalence of both an irregular bedtime schedule and insufficient sleep among university students in Taiwan. Students with an irregular bedtime schedule may experience poor sleep quality. We suggest further research that explores the mechanisms involved in an irregular bedtime schedule and the effectiveness of interventions for improving this condition.</p

    Reducing ultraviolet radiation exposure among outdoor workers: State of the evidence and recommendations

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Outdoor workers have high levels of exposure to ultraviolet radiation and the associated increased risk of skin cancer. This paper describes a review of: 1) descriptive data about outdoor workers' sun exposure and protection and related knowledge, attitudes, and policies and 2) evidence about the effectiveness of skin cancer prevention interventions in outdoor workplaces.</p> <p>Data sources</p> <p>Systematic evidence-based review.</p> <p>Data synthesis</p> <p>We found variable preventive practices, with men more likely to wear hats and protective clothing and women more likely to use sunscreen. Few data document education and prevention policies.</p> <p>Conclusion</p> <p>Reports of interventions to promote sun-safe practices and environments provide encouraging results, but yield insufficient evidence to recommend current strategies as effective. Additional efforts should focus on increasing sun protection policies and education programs in workplaces and evaluating whether they improve the health behavior of outdoor workers.</p

    Effective exposure to solar UV in building workers: influence of local and individual factors.

    No full text
    Excessive exposure to solar UV light is the main cause of skin cancers in humans. UV exposure depends on environmental as well as individual factors related to activity. Although outdoor occupational activities contribute significantly to the individual dose received, data on effective exposure are scarce and limited to a few occupations. A study was undertaken in order to assess effective short-term exposure among building workers and characterize the influence of individual and local factors on exposure. The effective exposure of construction workers in a mountainous area in the southern part of Switzerland was investigated through short-term dosimetry (97 dosimeters). Three altitudes, of about 500, 1500 and 2500 m were considered. Individual measurements over 20 working periods were performed using Spore film dosimeters on five body locations. The postural activity of workers was concomitantly recorded and static UV measurements were also performed. Effective exposure among building workers was high and exceeded occupational recommendations, for all individuals for at least one body location. The mean daily UV dose in plain was 11.9 SED (0.0-31.3 SED), in middle mountain 21.4 SED (6.6-46.8 SED) and in high mountain 28.6 SED (0.0-91.1 SED). Measured doses between workers and anatomical locations exhibited a high variability, stressing the role of local exposure conditions and individual factors. Short-term effective exposure ranged between 0 and 200% of ambient irradiation, indicating the occurrence of intense, subacute exposures. A predictive irradiation model was developed to investigate the role of individual factors. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure, and were also found to account more than altitude on the total variance of effective daily exposures. Targeted sensitization actions through professional information channels and specific prevention messages are recommended. Altitude outdoor workers should also benefit from preventive medical examination
    corecore