19 research outputs found

    Topical Gene Electrotransfer to the Epidermis of Hairless Guinea Pig by Non-invasive Multielectrode Array

    Get PDF
    Topical gene delivery to the epidermis has the potential to be an effective therapy for skin disorders, cutaneous cancers, vaccinations and systemic metabolic diseases. Previously, we reported on a non-invasive multielectrode array (MEA) that efficiently delivered plasmid DNA and enhanced expression to the skin of several animal models by in vivo gene electrotransfer. Here, we characterized plasmid DNA delivery with the MEA in a hairless guinea pig model, which has a similar histology and structure to human skin. Significant elevation of gene expression up to 4 logs was achieved with intradermal DNA administration followed by topical non-invasive skin gene electrotransfer. This delivery produced gene expression in the skin of hairless guinea pig up to 12 to 15 days. Gene expression was observed exclusively in the epidermis. Skin gene electrotransfer with the MEA resulted in only minimal and mild skin changes. A low level of human Factor IX was detected in the plasma of hairless guinea pig after geneelectrotransfer with the MEA, although a significant increase of Factor IX was obtained in the skin of animals. These results suggest geneelectrotransfer with the MEA can be a safe, efficient, non-invasive skin delivery method for skin disorders, vaccinations and potential systemic diseases where low levels of gene products are sufficient

    Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment

    Get PDF
    BACKGROUND: Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. CONCLUSIONS/SIGNIFICANCE: This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance

    Interactions between the adducin 2 gene and antihypertensive drug therapies in determining blood pressure in people with hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As part of the NHLBI Family Blood Pressure Program, the Genetic Epidemiology Network of Arteriopathy (GENOA) recruited 575 sibships (n = 1583 individuals) from Rochester, MN who had at least two hypertensive siblings diagnosed before age 60. Linkage analysis identified a region on chromosome 2 that was investigated using 70 single nucleotide polymorphisms (SNPs) typed in 7 positional candidate genes, including adducin 2 (<it>ADD2</it>).</p> <p>Method</p> <p>To investigate whether blood pressure (BP) levels in these hypertensives (n = 1133) were influenced by gene-by-drug interactions, we used cross-validation statistical methods (i.e., estimating a model for predicting BP levels in one subgroup and testing it in a different subgroup). These methods greatly reduced the chance of false positive findings.</p> <p>Results</p> <p>Eight SNPs in <it>ADD2 </it>were significantly associated with systolic BP in untreated hypertensives (p-value < 0.05). Moreover, we also identified SNPs associated with gene-by-drug interactions on systolic BP in drug-treated hypertensives. The TT genotype at SNP rs1541582 was associated with an average systolic BP of 133 mmHg in the beta-blocker subgroup and 148 mmHg in the diuretic subgroup after adjusting for overall mean differences among drug classes.</p> <p>Conclusion</p> <p>Our findings suggest that hypertension candidate gene variation may influence BP responses to specific antihypertensive drug therapies and measurement of genetic variation may assist in identifying subgroups of hypertensive patients who will benefit most from particular antihypertensive drug therapies.</p

    Transdermal Delivery of Proteins

    No full text
    Transdermal delivery of peptides and proteins avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Since proteins have a large size and are hydrophilic in nature, they cannot permeate passively across the skin due to the stratum corneum which allows the transport of only small lipophilic drug molecules. Enhancement techniques such as chemical enhancers, iontophoresis, microneedles, electroporation, sonophoresis, thermal ablation, laser ablation, radiofrequency ablation and noninvasive jet injectors aid in the delivery of proteins by overcoming the skin barrier in different ways. In this review, these enhancement techniques that can enable the transdermal delivery of proteins are discussed, including a discussion of mechanisms, sterility requirements, and commercial development of products. Combination of enhancement techniques may result in a synergistic effect allowing increased protein delivery and these are also discussed
    corecore