5 research outputs found

    The role of dendritic cells in the immunopathogenesis of psoriasis

    Get PDF
    Psoriasis vulgaris is a chronic inflammatory skin disease that is marked by a complex interplay of dendritic cells (DCs), T-cells, cytokines, and downstream transcription factors as part of a self-sustaining type 1 cytokine network. As integral players of the immune system, DCs represent antigen-presenting cells that are crucial for efficient activation of T-cells and B-cells. DCs have also been linked to distinct chronic inflammatory conditions, including psoriasis. In the setting of psoriasis therapy, DC/T cell interactions serve as a potential target for biologic response modifiers. Here we describe the major DC subsets as well as the immunologic involvement of DCs within the context of psoriatic lesions

    Chemokines in onchocerciasis patients after a single dose of ivermectin

    No full text
    Ivermectin treatment will effectively diminish microfilariae (Mf) of Onchocerca volvulus in the skin of patients, but therapy is associated with adverse host inflammatory responses. To investigate the association of proinflammatory chemokines with the intensity of infection and clinical adverse reactions, chemokine serum levels were measured in patients following ivermectin treatment (100 碌g/kg, 150 碌g/kg or 200 碌g/kg) or placebo. The density of O. volvulus Mf per mg skin decreased by 85%, 97%, 97% and 90% at day 3, at month 3, month 6 and at 1 year post-ivermectin. The cutaneous T cell-attracting chemokine (CTACK/CCL27) was found highly elevated in onchocerciasis patients compared to infection-free European controls (P = 0路0004) and it did not change following ivermectin or placebo to 1 year post-therapy. The chemokine RANTES/CCL5 (regulated on activated and normally T cell-expressed) was similarly high in onchocerciasis patients and infection-free European controls; the RANTES/CCL5 levels did not change following treatment until 6 months post-therapy but were slightly elevated at 1 year post-therapy (P < 0路02). In contrast, the Th2-type chemoattractants, thymus and activation regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22), were activated at 3 days post-ivermectin (P < 0路0001) to return to pretreatment or lower levels thereafter. The Th1-type chemoattractants, macrophage inflammatory protein (MIP)-1伪/CCL3 and MIP-1尾/CCL4 were low before ivermectin treatment, but following clearance of microfilariae of O. volvulus their levels increased from 6 months post-therapy onwards (for both at 12 months post-therapy, P < 0路0001). The adverse reaction scores (RS) in treated patients increased significantly on day 3 (P < 0路02) while it remained unchanged in those who received placebo (P = 0路22); RS interacted with the microfilarial density (P = 0路01), but not with the dose of ivermectin or with the serum levels of MIP-1伪/CCL3, MIP-1尾/CCL4, TARC/CCL17, MDC/CCL22 and CTACK/CCL27. Our observations suggest that following ivermectin, macrophages as well as memory Th2-type lymphocytes and B cells, attracted and activated by MDC/CCL22, TARC/CCL17 and CTACK/CCL27, may contribute to dermal immune responses and O. volvulus Mf killing and clearance. The transient changes of TARC/CCL17 and MDC/CCL22 were not associated with clinical adverse responses, and the later rise of MIP-1伪/CCL3 and MIP-1尾/CCL4 showed a reactivation of Type 1 immune responses associated with persistent low levels of O. volvulus microfilariae and an expiring O. volvulus infection

    Macrophages in tumour development and metastasis

    No full text
    corecore